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We introduce several physical quantities as diagnoses of many-body localization phase transition;
the relationship between adjacent eigenstates/energies, spatial correlations, and entanglement en-
tropy (EE). These are numerically evaluated by the exact diagonalization (ED). The means of the
quantities numerically obtained clearly distinguish the two phases. Furthermore, we show that the
normalized variances of the correlation function and EE of half-chain have their peaks at the critical
region, and their peaks increase as the system size grows. Further investigation suggests that the
variance of EE is primarily dominated by the variance over realizations of the disorder rather than
the one over different states or different cuts of the chain. The scaling of these peaks indicates that
the system sizes we can access with ED are still in the pre-asymptotic regime far from the fixed
point governed by the ’external’ randomness. At last, we briefly discuss the possible structure of
entanglement in the crossover between the MBL phase and the thermal phase.
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I. INTRODUCTION

The notion of localization was first proposed by
P.W.Anderson, which deprives many-body systems of er-
godicity and prevents it from thermalization. This prop-
erty emerges in systems with quenched disorders. While
Anderson initially analyzed a non-interacting single par-
ticle system, many-body localization (MBL) is its gener-
alization by allowing interactions in many-body systems.
In this report, we introduce some numerical studies on
many-body localization phase transitions, i.e., dynamical
phase transition between the MBL phase and the ther-
mal phase. The numerical results shown in the follow-
ing sections are obtained by us with reference to these
papers1–3.

In the next section, we introduce the model we discuss.
Then in the following section, we discuss several principal
diagnoses of the transition; the relationship between ad-
jacent eigenstates and energies, spatial correlation func-
tion, and entanglement entropy.

II. THE MODEL AND THE NUMERICAL
METHOD

We focus on a commonly studied model exhibiting
MBL phase transition, a spin-1/2 Heisenberg chain with
a random field in the z-direction.
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The field hi are i.i.d random variables following a uniform
distribution on [−h, h].

FIG. 1: The rough phase diagram on disorder(h) - energy
density(ε) space of disordered Heisenberg chain Eq.(1), illus-
trated based on the numerics in Luitz et al.2. The boundary
is computed from the finite scalings of various physical quan-
tities with system size L = 14 to 22.

This model shows MBL phase transition at h = hc =
2 ∼ 4, i.e., below hc, the dynamics of the system is gov-
erned by the neighborhood coupling showing ergodicity
and converging to thermal equilibrium states. In con-
trast, above hc, the system shows localization and fails
to thermalize due to the strong disorder. Since this sys-
tem conserves the total Sz, we restrict our focus only
on the symmetric sector of Sztot = 0, which does not af-
fect the properties of the MBL phase transition. For the
numerical computation of the physical quantities in the
following section, we need the information of eigenvalues
and eigenvectors of the Hamiltonian. Thus exact diago-
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nalization (ED) is employed. Pal et al.1 use the middle
one-third of the Hamiltonian spectrum gained by ED for
their analysis, up to system size L = 16. Luitz et al.2

use a shift-inverted ED method based on a parallel LU
decomposition to compute the spectrum around a cer-
tain energy level, which allows them to reach L = 22.
Khemani et al.3 do not explicitly make mention of their
algorithm, but numerically computes physical quantities
up to L = 18. While the fact that the complexity of the
algorithm gets exponentially large as the system size L
grows makes it difficult to analyze systems with larger L,
we still can observe some signs of the phase transition.
Figure(1) shows the rough phase diagram on disorder (h)
- normalized energy density (ε) space. In the following
section, we will discuss the numerical results of several
physical quantities that work as signals of the MBL phase
transition. Note that the statistical values shown in the
following figures are computed over 2000, 2000, 200, 200,
or 50 realizations of the disorder h for L = 8, 10, 12, 14,
16, respectively.

III. SIGNALS OF PHASE TRANSITION

A. relationship between adjacent eigenstates and
energies

In both phases, the highly excited eigenstates are in
the middle of the continuous energy spectrum, and the
energy gaps between the adjacent eigenstates are expo-
nentially small. In the thermal phase, the eigenstate ther-
malization hypothesis holds, and (almost) all eigenstates
behave as thermal Gibbs states, which means the eigen-
states |n〉, |m〉 with close energy level En ∼ Em should
show similar expectation values of local observables such

as m
(n)
iα := 〈Szi 〉α (α is an index representing a sample of

disorder). On the other hand, in MBL phase, energy lev-
els are largely governed by disorders hi, and eigenstates

with similar values of m
(n)
iα usually have energy discrep-

ancy of order O(h) due to the configuration difference
in other sites, which is much larger than the exponen-
tially small energy gap between the adjacent eigenstates.
This means that the adjacent eigenstates have distinct

values of m
(n)
iα . Figure(2) shows the discrepancy of m

(n)
iα

averaged over multiple eigenstate pairs and realizations
of the disorder. We can see that in the MBL phase, the
difference is independent of system size L, while it drops
exponentially in the thermal phase.

Another remarkable feature in the MBL phase ap-
pears in its level statistics. Considering the extreme case
where h is much larger than the nearest-neighbor cou-
pling, all the eigen-energies are a summation of his with
certain sign multiplication. Since hi are i.i.d random vari-
ables, the level statistics follows the Poisson distribution,
which is unlike the thermal phase following Gaussian-
orthogonal ensemble (GOE) level statistics. This dis-
tinctive feature of the MBL phase can be well-captured
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FIG. 2: The natural logarithm of the averaged difference of
local magnetization between adjacent eigenstates. The aver-
age is taken over eigenstate pairs in the middle one-third of
the energy spectrum and over realizations of disorders. These
numerical results are computed by Atsushi Yamamura with
reference to Pal et al.1.

by observing so-called r-ratio

r(n)α := min{δ(n)α , δ(n+1)
α }/max{δ(n)α , δ(n+1)

α } (2)

, where δ
(n)
α is the energy gap between n-th and n + 1-

th energy level of a sample α. The average of this r-
ratio converges to ≈ 0.53, ≈ 0.39 in the limit of L→∞
in the case of GOE statistics, or the Possion distribu-
tion, respectively. Figure(3) clearly shows this transition.
The crossing points of these curves can be an estimate
of the critical point hc. A noteworthy observation here
is that the crossing point gets larger as L grows, which
indicates that this transition is happening in the cross-
over between thermal phase and quantum critical regime,
rather than between the MBL phase and quantum criti-
cal regime. The other quantities observed by ED method
also show this behavior.
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FIG. 3: The r-ratio between adjacent eigenstates averaged
over eigenstate pairs in the middle one-third of the energy
spectrum and over realizations of disorders. These numerical
results are computed by Atsushi Yamamura with reference to
Pal et al.1.
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B. spatial correlations

Pal et al. studies spatial correlations to explore the
finite-size scaling properties of the MBL transition. Here
correlation function Czznα(i, j) between sites i, j of sample
α is defined as follows:

Czznα(i, j) := 〈n|Szi Szj |n〉α − 〈n|Szi |n〉α〈n|Szj |n〉α (3)

Figure(4) shows the averaged correlation function
Czznα(i, i + d) as a function of distance d. In the thermal
regime, since we are observing highly exited (high tem-
perature) eigenstates, 〈n|Szi |n〉α ≈ 0. Therefore, in the
symmetric sector of Sztot = 0, spins are anti-correlated,
and we see that Czznα ∼ L−1 for spins with adequate dis-
tance. This means that logarithm of the correlation is
finite even with relatively large d. On the other hand,
in the localized regime, we expect that the correlation
exponentially drops in the scale of correlation length ζ,

Czznα(i, j) ∼ exp(−|i− j|/ζ).

This agrees with Figure(4), which shows the linear de-
crease of the correlation function in the log plot.

Pal et al.1 further computed the spin correlation func-
tion with longer distance L/2, and analyzed the statistics
of the natural logarithm of the averaged correlation func-
tion φ:

φ = ln |Czznα(i, i+ L/2)|. (4)

Figure(5) shows the difference in the distribution of φ
between the MBL phase and the thermal phase. It shows
that in the thermal phase, it converges to a finite value
as L grows, while it has a broad symmetric structure in
the MBL phase. In the critical regime between the two,
the distribution gets asymmetric and broad.

To analyze the scaling, the authors construct a di-
mensionless quantity, the normalized standard deviation
σ :=

√
V ar[φ]/E[φ]. Figure(6) shows it as a function of

disorder amplitude h. Due to the asymmetric structure,
it has a peak in the critical region, which gets sharp and
grows as L increases. The authors argue that this might
be an indication that the MBL phase transition might
be in an infinite-randomness universality class. As we
are going to discuss in the next subsection, this peak of
variance can also be seen in entanglement entropy.

C. entanglement entropy

In this subsection, we introduce the behavior of en-
tanglement entropy at the phase transition. In Luitz et
al.2, they computed entanglement entropy (EE) SE be-
tween the left half of the chain and the right half. We
expect that EE follows volume law SE ∼ O(L) in the
thermal phase, while in the MBL phase, the entangle-
ment decays exponentially and the entropy follows area
law SE ∼ O(1). This transition can be seen in Figure(7).
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FIG. 4: The averaged spin correlation function Czznα(i, i + d)
in the symmetric sector Sztot = 0, as a function of distance
d. It decays exponentially in the localization regime. These
numerical results are computed by Atsushi Yamamura with
reference to Pal et al.1.
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FIG. 5: The probability distribution of the natural logarithm
of the averaged correlation function φ. The system size here
is L = 16. These numerical results are computed by Atsushi
Yamamura with reference to Pal et al.1.
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FIG. 6: The normalized standard deviation of φ, σ :=√
V ar[φ]/E[φ] as a function of disorder amplitude h. These

numerical results are computed by Atsushi Yamamura with
reference to Pal et al.1.

Here EE is averaged over realizations of the disorder and
over 100 eigenstates at the middle of the energy spec-
trum. In this figure we computed EE up to L ∼ 16, but
they successfully obtained it up to L ∼ 22, and perform
a collapse of SE/L to the form of g(L1/ν(h − hc)), by
assuming a volume-law scaling at the critical point. The
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estimated values of ν and hc are ν ≈ 0.8 and hc ≈ 3.6.
This value of critical exponent ν apparently violates the
Harris criterion ν ≥ 2d = 2.
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FIG. 7: Entanglement entropy SE of eigenstates at the middle
of the energy spectrum. They are averaged over 100 eigen-
states and over realizations of disorders. We can observe the
volume-law in the thermal phase, and the area-law in MBL
phase.

Khemani et al.3 further discuss the variance σS of EE
of half-chains. Specifically, they separately analyzed the
variance over different realizations (samples) of disorders,
different states, and different cuts of the chain. Figure(8)
shows the following three different contributions to the
standard deviation of EE.

1. dotted lines: These are obtained by first averaging
EE over different cuts of the chain and different
eigenstates for each sample of disorder, and then
computing the statistics over samples.

2. solid lines: These are obtained by first averaging
EE over different cuts for each eigenstate with each
sample of disorder, and then computing the stan-
dard deviation of the averaged EE over different
eigenstates and then averaging the standard devia-
tion over different samples of the disorder.

3. dashed lines: These are obtained by first computing
the standard deviation of EE over different cuts,
and then averaging it over different eigenstates and
different samples of the disorder.

Here the cuts are chosen such that they separate the
chain of size L into two chains of size L/2, and means and
variances are taken across all the possible such cuts. Also,
100 eigenstates at the middle of eigen spectrum are used
to compute the statistics across states. The computed
standard deviations are divided by ST = 0.5[L ln(2)− 1]
so that the fraction of EE ranges from 0 to 1. Therefore
the y-axis in Figure(8) must not exceed 1

2 (This maxi-
mum is realized when EE follows Bernoulli distribution of
0 or 1 with equal probabilities). The first remarkable fact
observed in this figure is that the peak value of the solid
line is independent of the system size L, which means
the area-law σS ∼ ST ∼ L. In contrast, the peak value

of the dotted line monotonically grows as L gets large,
which suggests a scaling σS ∼ Lα (α > 1). Nevertheless,
because the y-axis is 1

2 at its maximum, it should saturate
at larger values of L, and its scaling should be different
in the regime. It means that the regime of L reachable
by numerical calculations is still pre-asymptotic, and far
away from the fixed point dominated by the random-
ness of the disorder. Therefore it is reasonable that the
critical exponent ν gained by numerical analysis breaks
Harris criterion.

Finally, the peak of the dashed line appears to be
decreasing as L grows, which indicates a scaling σS ∼
Lα (α < 1). As long as this scaling is still valid in
the asymptotic regime, Khemani et al.3 argue that it
gives some insight into the entanglement structure of the
crossover from the MBL phase to the thermal phase.
Specifically, they consider two possible models of the
crossover. One is a picture where the system has a small
number of long contiguous thermal or localized blocks,
which gives a subthermal but volume-law EE. The other
model is the one with a long sparse entangled cluster,
which consists of many small thermal blocks with various
degrees of entanglement. Following the first picture, the
half-chain EE is strongly influenced by whether the cut
is in the thermal or localized block, which probably gives
a bimodal distribution and its standard deviation scales
∼ L. In contrast, the alternative picture tells us that
EE depends on how many spins belonging to the sparse
entangled cluster the half-chain has, and if the number
of spins in the cluster is order of N , the standard devia-
tion of the number of those spins in the half-chain scales
∼ N1/2, which suggests that the standard deviation of
EE also scales ∼ N1/2. Therefore the authors claim that
this picture matches the result shown in Figure(8) rather
than the first picture.
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FIG. 8: Standard deviation of entanglement entropy of half-
chain σS divided by the random pure state value ST . dashed
lines, solid lines, and dotted line represent contributions
of cut-to-cut, eigenstate-to-eigenstate, and sample-to-sample
variations, respectively. These numerical results are com-
puted by Atsushi Yamamura with reference to Khemani et
al.3.
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IV. SUMMARY

In this report, we introduced the many-body localiza-
tion phase transition observed in the spin-1/2 Heisenberg
model with random fields along the z direction and dis-
cussed several critical physical quantities as signals of the
phase transition, based on the numerical computations.
The first remarkable transition between the two phases
can be seen in the relationship between adjacent eigen-
states in the energy spectrum. In the thermal phase,
adjacent eigenstates have almost equivalent expectation
value of local magnetization, and the statistics of energy
difference follows the one of GOE. In contrast, in the
MBL phase, adjacent eigenstates have different values of
local magnetization, and the level statistics follow the
Poisson distribution. In addition to these quantities, we
also introduced statistics of spatial quantities: the spin
correlation function and half-chain entanglement entropy.
They both work as a diagnosis of the transition. The

averaged correlation function decays exponentially as a
function of distance in the MBL phase in contrary to
the thermal phase. The averaged entanglement entropy
follows the volume-law (area-law) in the thermal phase
(the MBL phase), respectively. Moreover, we report that
the normalized standard deviation of these two quantities
shows a peak at the critical region. Further analyses show
that the contribution of this variance is mostly from the
one over different realizations. The peak of the variance
grows monotonically and does not show the behavior of
saturation, which should be able to be observed in the
asymptotic regime. This fact indicates that the accessi-
ble system size L is still in the pre-asymptotic regime far
from the fixed point governed by the ’external’ random-
ness. In these computations, we need to rely on exact di-
agonalization, which makes it challenging to deal with a
larger L. At last, we briefly discussed the possible model
of the entanglement structure of crossover from the MBL
phase to the thermal phase.
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