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I. INTRODUCTION

A classical system in which its motions are governed by
non-linear equations can exhibit chaotic motions. Chaos
in the classical sense means that the the system has an
exquisite sensitivity to small perturbations in its phase-
space trajectories. A famous example is the ”Butterfly
Effect”, illustrating the point that any small difference in
the initial condition can cause chaotic behavior.

On the other hand, this notion of classical chaos does
not apply directly to a quantum mechanical system, in
which its dynamics is governed by the linear Schrodinger
equation. As in classical chaotic systems, one can use
phase-space methods to describe quantum mechanical
systems; however, the notion of trajectory is meaning-
less since the uncertainty principle forbids simultaneous
measurement of coordinates and momenta. In such case,
one may ask what chaos is, in the quantum mechanical
setting.

Although, to this day, there is no precise definition of
quantum chaos, it is referred to as chaos in the quan-
tum mechanical setting. The basis for the understanding
of quantum chaos has been formulated by Wigner and
Dyson to understand the spectra of complex atomic nu-
clei, now called Random Matrix Theory (RMT).! The
idea of this theory is that rather than finding the exact
eigenspectra of chaotic Hamiltonians, one should instead
probe their statistics.

Following this idea, Bohigas, Giannoni, and Schmit
has formulated the BGS conjecture stating that quantum
systems with a classical chaotic analog are described by
RMT.? If the energy level spacing of arbitary quantum
systems follow this he Wigner-Dyson distribution, then
it can be said that the system is a quantum chaotic sys-
tem. RMT acts as a tool to indicate whether a quantum
system is chaotic or not.

RMT also has deep connections with thermalization
of quantum mechanical systems. von Neumann’s insight
for quantum mechanical systems was that rather than

focusing on their wave functions, one should instead fo-
cus on the observables. In his theorem, the quantum
ergodic theorem, he stated that observable will relax to
a microcanonical distribution at later times.? This relax-
ation of observables to the microcanonical distribution
is called thermalization, a concept deeply connected to
RMT. Since RMT was limited in describing physical ob-
servables in real systems, in the 1990’s Srednicki gen-
eralized its notion by making an ansatz, known as the
Eigenstate Thermalization Hypothesis (ETH).!146

Following the discussions given by D’Alessio et.al.!,
this paper will survey some of the key concepts in RMT,
quantum chaos and ETH. The goal of this paper is to
illustrate how these concepts relate to one another.

II. CLASSICAL CHAOS
A. Phase space and Liouville’s Theorem

Suppose we have a system of N point particle systems
in which the position ¢; and momenta p; of each par-
ticle is known, where ¢ indicates the i-th particle. For
instance, let there be N particles. In this case, if the
position and momentum for each particle have 3 compo-
nents, then the subscript ¢ will run from 1 to 3N. A pair
of position and momentum (g;, p;) is referred to as the
degree of freedom. In the example above, the degree of
freedom is then, 3N. 3N of these pairs are needed to
describe a dynamical system.

Consider a conserved system, or in other words, a sys-
tem without any dissipation. A Hamiltonian of such sys-
tem is described as a function of g; and p; that completely
describes the system. The dynamics of the system can be
expressed by considering the time evolution of the vari-
ables, ¢; and p;, namely, ¢;(t) and p;(¢). In such case, the



following Hamilton’s equations,?
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where ¢ = 1,...,3N, if as in the above example, each
particle has 3 components for their momenta and posi-
tion. It is worth noting that the Hamilton’s equations
are coupled equations for each degree of freedom.

The Hamiltonian for the conserved system is depen-
dent on momenta p, and position q. Let the system
not be subject to time dependent forces. The total time
derivative of the system can be found by the following,?
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Due to the assumption that the system is not subject to
time dependent forces, %—Iz = 0. Now, using the coupled

differential equations for the position and momenta,?
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If (4) holds true for each 7 in (3), it can be concluded that
% = 0 and H itself is a conserved quantity of the

system. If H is the total energy, what ever the motion
of the trajectories are in phase space (discussed in this
section later), H is constant.

Next, the notion of Phase space of a conserved system
will be mentioned. Phase space is a space created by
position p and momenta q. Let a system under consider-
ation have N degrees of freedom, then its dimensionality
is 2N since each degree of freedom is represented by the
pair ¢ and p. In such conserved systems H(q,p) = E,
where F is a constant energy value defined by the initial
conditions of ¢ and p. The trajectory that the system
will follow in phase space will be confined to this 2N — 1
dimensional constant energy surface.?

Notice that there are multiple possibilities of initial
conditions that the system can take. Therefore, we can
define a distribution of initial conditions in phase space.
Let the probability density function of the distribution
be represented as p(q,p). In this case, this function is
defined so that the probability P(q,p) of finding a tra-
jectory in an infinitesimal volume dV in phase space is
defined by P(q,p) = p(q,p)dV. The probability density
function p(p, q) can be shown to follow the following dy-
namics as the system evolves over time,?
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It can be shown that for a conserved system in which
its Hamiltonian changes with time, the number of initial

conditions inside a volume in phase space will stay con-
stant. This allows us to make the notion that % =0.2
Applying this to (5), we get the following,?
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This is called the Liouwille’s theorem. The terms inside
the brackets describe how the density p varies with re-
spect to ¢ and p. On the other hand, 57 describes the dy-
namics of p at a fixed point defined in phase space. What
this theorem implies is that p does not evolve chaotically
because it is linear in p. In other words, if the system
starts in a different initial condition, then the probability
distribution of the initial conditions will not evolve ex-
ponentially compared to the original distribution. This
notion can be extended not only for non-chaotic systems,
but also for chaotic systems in which the trajectories are
diverging exponentially.?

B. Integrable and nonintegrable systems

Consider a conserved system with its trajectory in
phase space start at initial condition (gg,po). Since the
system is conserved, the energy of the system will have
the same value at later times, which leads us to write
the Hamiltonian as H(q(t),p(t)) = H(qo,po). Here,
(g(t),p(t)) is the trajectory in phase space. Recall Hamil-

ton’s equation considering momenta in (2). Consider a
case where gf = —dd’;i = 0. From this, we can say

that when H does not have dependence on g;, there is
no time dependence on p;. Therefore, in this system,
the trajectories are constrained by the constant energy
value H(qo,po) and p; values. If the system has N de-
grees of freedom, and a total of M conserved quantities,
then the trajectories will be on a 2N — M dimensional
surface. There are two types of conserved systems: inte-
grable and nonintegrable systems. A system is said to be
integrable if the number of conserved quantities is equal
or greater than the number of degrees of freedom. On the
other hand, a system is considered nonintegrable if the
number of conserved quantities is fewer than the number
of degrees of freedom. In an nonintegrable system there
are less constraints on the trajectories, therefore mak-
ing them able able to travel through phase space more
freely. In such system, chaotic motions are possible. In
an integrable system, on the other hand, the motions of
the system are constrained by the conserved quantities;
therefore, in such a system, generally, the system will not
show chaotic motion. However, there are cases in which
integrable systems display sensitivity to initial conditions
leading to chaotic behavior.

In this section, the phase space formulation of con-
served classical systems have been discussed. In such for-
mulation, it is possible to analyze chaotic behavior and
classically, it is well understood. One may ask if there
is a quantum analogy to these chaotic behaviors, namely



quantum chaos. This will be discussed in the following
sections.

III. RANDOM MATRIX THEORY AND
QUANTUM CHAOS

As described in the previous section, a system is called
chaotic when it has an exquisite sensitivity to its ini-
tial conditions in its phase-space trajectories. One can-
not directly use the phase-space trajectory argument in
quantum mechanical systems since it is forbidden by the
uncertainty principle to measure both coordinate and
momenta simultaneously, making it impossible to define
what a trajectory in phase space actually is. The no-
tion of trajectory becomes meaningless in the quantum
mechanical setting. Recall Hamilton’s equations in (1)
and (2). For chaotic motions to occur in classical me-
chanics, the Hamiltonian H must be nonlinear. In quan-
tum mechanics, the Hamiltonian H is described by the
Schrodinger’s equation, which is linear. It is then obvious
that one cannot smoothly apply the concepts in classical
chaos directly to chaos in quantum mechanical systems.
As mentioned in the introduction, chaos in quantum me-
chanical systems, or quantum chaos has its core theory
deeply rooted in Random Matrix Theory (RMT). RMT
is also the basis for eigenstate thermalization. This sec-
tion will review RMT and its connections to quantum
chaos and necessary concepts to understand the key con-
cepts in eigenstate thermalization later developed in this

paper.

A. Random Matrix Ensembles and Wigner-Dyson
Distributions

Random Matrix Theory (RMT) is a theory to provide
insight into the many properties of random matrices in
which its entries are chosen randomly from specific prob-
ability distributions called random matrix ensembles. In
order to illustrate the characteristics of RMT, first, con-
sider a simple 2 x 2 Hamiltonian whose entries are taken
from a Gaussian distribution with a mean of zero and
with variance ¢.n7
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The eigenvalues of the Hamiltonian can be found using

the general procedure, and it is found that eigenvalues

FEq, Ey are
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The plot of Fy, Es with respect to A1 — Az is given in Fig.
1. It is shown that F; and F5 do not cross each other,
or in other words, the energy levels are repulsive to each
other. This is called energy repulsion.

FIG. 1: Schematic of energy level repulsion in a 2 x 2 Hamil-
tonian.

If the two level system has time reversal symmetry,
then H is a real matrix and hence its off diagonal entries
satisfy G = G* by hermiticity. In the case where the sys-
tem has its time reversal symmetry is broken, then the
real and the imaginary values of the off diagonal entry G
can themselves be treated as random variables, each cho-
sen from Gaussian distribution. Let the level separation
be expressed as w = E; — F5. The probability distri-
bution of the level separation P(w) in the case when the
system has time reversal symmetry, and in the case when
it does not, are given in the following respectively.!

Pl) = e [ )
2 2
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There are two characteristics that can be drawn from
the statistics. Firstly, in the limit w — 0, it can be seen
that P(w) — 0, indicating that there is a level repulsion
between the two eigenvalues of the Hamiltonian F1, Es,
as mentioned previously and shown schematically in Fig.
1. Secondly, P(w) decays in the limit where w is large.
If we generalize the above distributions,!

P(w) = Nyw” exp{ [-M,w?] } (11)

where «y is the variance of the distribution and an indi-
cator of whether the system has time reversal symmetry.
v = 1 is when the system is time reversal symmetric
and v = 2 is when time reversal symmetry is broken.
N,, M, are normalization constants from P(w). This
distribution in (11) is called the Wigner surmise. In par-
ticular, the energy level spacing distribution presented
here for v = 1 and v = 2 are what the Gaussian orthogo-
nal ensemble (GOE) and the Gaussian Unitary Ensemble



(GUE) follow respectively. The GOE and the GUE will
be explained below.

Suppose there is an ensemble of random matrices of
arbitrary size in which the components are drawn from
a Gaussian distribution as in the 2 x 2 Hamiltonian ex-
ample. The distribution of these random matrices are
expressed as the following,"”

2 i *
P(H) x exp 92 E HijHj; |, (12)
j

where k represents the energy scale. There are three
ensembles of matrices that can be extracted from this
distribution. (i) Gaussian orthogonal ensemble (GOE)
The ensemble of Hamiltonians with time reversal sym-
metry, v = 1, and its components satisfy H;; = Hj;. (ii)
Gaussian unitary ensemble (GUE) The Hamiltonians do
not have time reversal symmetry, v = 2, and components
satisfy H;; = H; due to the fact that Hamiltonian en-
tries are complex. (iii) Gaussian Symplectic Ensemble
(GSE) The ensemble of Hamiltonians that are invariant
with respect to symplectic transformations. In this case,
v =4

Note that these are the distribution for the random
ensembles, not their energy level spacing as was shown
for 2 x 2 Hamiltonian. When analyzing a certain com-
plex quantum system, one will generate an ensemble of
matrices such as the GOE and GUE that will represent
the Hamiltonian of the system. In the general case of
ensembles of larger matrices, unlike P(w) in the 2 x 2
Hamiltonian system as in the example, the analytic form
is hard to find, but its form is close to the Wigner sur-
mise (11).%7 Such distribution of level spacing is called
the Wigner-Dyson distribution. Note that ”level spacing”
here refers to the energy difference between neighboring
energy eigenvalues.

As previously stated in the introduction, Bohigas, Gi-
annoni, and Schmit discovered that the level spacing dis-
tribution of a single particle system followed the Wigner-
Dyson distribution in a narrow window of high energies.?
On the same paper, they made a conjecture that in
the limit of high energies, if a classical system is highly
chaotic, then it will have corresponding quantum energy
levels that follow the Wigner-Dyson distribution.®10 If
the level spacing distribution follows the Wigner-Dyson
distribution, then it can be said that it is reflecting chaos
in the quantum level, or quantum chaos. Studying these
level spacing statistics from an ensemble of random ma-
trices such as the GOE and the GUE lies at the core of
RMT.

It is important to note the difference between a physi-
cal Hamiltonian and the Hamiltonian drawn from RMT.
Most physical Hamiltonians are expressed as sparse ma-
trices that are local, which can be non-random. On the
other hand, the Hamiltonian drawn from RMT is a dense
random matrix. It seems RMT cannot be applied to
physical Hamiltonians; however, under the special condi-
tion that the physical Hamiltonian is non-integrable, its

eigenspectra displays RMT statistics, the Wigner-Dyson
distribution.

B. Matrix elements of observables

_ For the convenience of later discussions, let an operator

O be called the observable of a given system. Since it
is an observable, it can be thought of as a Hermitian
operator, which can be represented as,’

0 =23 0513l (13)

and that O|j) = O, 1j). Suppose a system can be rep-
resented as a Hamiltonian that is a true random matrix
and that its eigenstates are represented as |n) and |m). It
can then be said that the entries of the observable under
the these eigenstates are,!

Omn = (m| Oln) = 30, (¥7)' w5 (14)

where ¥ = (jlm) and ¥} = (jln) are the in-
ner products of the eigenstates of the observable and
the Hamiltonian. Before proceeding, it is necessary
to briefly mention about the eigenvectors of the ran-
dom matrices. The distribution of the components of
the eigenvectors corresponding to the GOE and GUE
can be written as Pgop(¥1,Vs,...) o 0 (3, 7 —1),
Paup(¥1,¥s,...) o 6 (3,19 —1) respectively.:”
The probability distribution of the eigenvector compo-
nents imply that eigenvectors of random matrices are es-
sentially random unit vectors, that is, real or complex
corresponding to GOE or GUE.! Now going back to the
original discussion, if we let d represent the dimension of
the Hilbert space in which it is spanned by the eigenstates
of the Hamiltonian, then the average of the product be-
tween eigenvector components over random eigenstates
can be expressed as V"0 = éémnéij.l This is due to
the orthogonality between the eigenvectors that are es-
sentially random unit vectors as previously mentioned.
Using this relation, the average value of the observable
components can be represented as the following',

15T 0. f —
Omn - d ZZ OZ’ orm " (15)
0, for m #n

This shows that when evaluating for the average value of
the observable components one finds that only the diag-
onal entries are nonzero, and that it gets suppressed by
the dimension of the Hilbert space.

The fluctuations of the observable entries can be shown
to satisfy the following,'

OWLzz{Bd_;ZiOiz’ for m =n (16)

0z _
mm =>,02,  form#n



Assuming that the fluctuations are small and indepen-
dent with respect to the dimension of the Hilbert space,
(16) tells us that the fluctuation gets smaller and smaller
with increasing dimension. Using these expression for
the fluctuations, one can express the observable entries
as the following to the leading order 1/d,*

02

Omn ~ Oamn + FRmn (17)

where it was defined that O = éZj 0,, 0? = ézj 03
and that R,,, is a component of a random matrix cho-
sen from a Gaussian distribution of zero mean and the
variance of either v = 1 for (GOE) and v = 2 for (GUE),
in which it will be real and complex respectively. The
average expressions given in these set of equations are
averaged over the eigenstates of each of the Hamiltonians
in an ensemble. As long as the dimension of the Hilbert
space d is large enough, or in other words, the samples
of the Hamiltonians are large enough, the observable of a
system governed by a fixed Hamiltonian can be approxi-
mated using equation (17).

C. Quantum Integrability

In classical integrable and nonintegrable systems, the
notion of chaos is well defined via trajectories in phase
space. However in the quantum setting, the notion of
chaos is nontrivial. To understand quantum chaos, one
can use RMT and look at many different statistical fea-
tures to analyze the random matrix eigenspectrum; how-
ever, the common procedure is to probe the distribution
of energy level spacing of the eigenstates. In the previous
section, it was stated if the level spacing distributions of
the quantum system follows the Wigner-Dyson distribu-
tion, then it is an indication of quantum chaos. As in
classical systems, one may ask if there exists integrabil-
ity in the quantum setting and if there exists its indicator
for it. In the quantum setting, integrals of motion and its
indicator does exist. As the Wigner-Dyson distribution
was the distribution of energy level spacing for quantum
chaotic systems and the indicator for such systems, the
distribution of energy level spacings for quantum inte-
grable systems follow a Poisson distribution,®

P(w) = exp|—w]. (18)

where w is the energy level spacing and the mean level
spacing was set to unity. The main difference of this
distribution from the Wigner-Dyson distribution, which
again follows a form similar to the Wigner surmise in
(11), is that the Poisson form does not have energy level
repulsion. From this view point, it can be said that to
probe the distribution of energy level spacing is to probe
the energy level repulsion.

Recall Liouville’s theorem in (6). If the conserved sys-
tem started with a slightly different probability density p,

10 = Wigner-Dyscn
— Poisson
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FIG. 2: GOE following Wigner-Dyson distribution. The Pois-
son distribution is plotted for convenience.

then the new probability distribution will not exponen-
tially diverge from the original probability distribution,
even if the system itself is chaotic or not.? The role of
the probability distribution in phase space in the quan-
tum setting is played by the Wigner-Dyson and Poisson
distributions.

To illustrate the above discussions, suppose we gener-
ate an ensemble of random matrices. To be more specific,
let the ensemble be GOE. In Fig.2, the energy level spac-
ings for the GOE are shown as the histogram. It can
be seen that the energy level spacings follow the Wigner-
Dyson distribution. This indicates that the system shows
signs of quantum chaos. For convenience, the Poisson
distribution was plotted together in Fig. 2. In the case
where the random matrix ensemble follows the Poisson
distribution, the system is said to be integrable.

To summarize, if one finds that the level spacing dis-
tribution follows Poisson or Wigner-Dyson distribution,
then it means that they have found a signature for a
quantum integrable or chaotic system respectively.

IV. EIGENSTATE THERMALIZATION
A. Classical Thermalization

Let O represent an observable of an isolated system.
According to equilibrium statistical mechanics, the time
average of such observables over some time interval T,
(O)r are often what gets quantified. This time interval
T will be extended to infinity to account for the system to
reach thermal equilibirum, or thermalization. However,
when the time interval is taken to infinity, it seems impos-
sible to keep track of the value of the observables for all
times. It is necessary to find a different way to calculate
this quantity. Recall the phase space formulation in clas-
sical mechanics as introduced in section II of this paper.
If a system get arbitrarily close to following every possible
point in phase space in its phase space trajectory, A(t),



then the system is defined to be ergodic.'® In the limit
of long times, ergodicity states that the phase space tra-
jectory A(t) will follow every point in a constant energy
surface.'® Furthermore, Liouville’s theorem implies that
this phase space trajectory will end up covering the con-
stant energy surface uniformly.'® This leads to the fact
that the time average of an observable (O)r can also be
calculated by averaging over the phase space, which is
confined by a constant energy surface ES; therefore,'”

 [us O(A)dA
(O)r = TS

This is the formulation of averages in the microcanonical
ensemble in the classical setting. Classically, the fact
that the long time average is equal to the microcanonical
average is well defined. This is not so in the quantum
setting.

(19)

B. Quantum Thermalization

Quantum statistical mechanics postulates that a quan-
tum system is in contact with an external reservoir.'!
When a quantum system is not in contact with such reser-
voir, it is called a closed quantum system. However, it is
possible to divide such system into a subsystem, which
contain a fraction of the total degrees of freedom in the
whole system, and the remaining portion of the closed
system as a reservoir.!! If the rest of the system can act
a reservoir for the small subsystem, then we can recover
the notions of quantum statistical mechanics again and
at late times, the subsystem can undergo thermalization.
Before proceeding, note that observables in closed quan-
tum systems are local. In a given system, we cannot track
all the degrees of freedom upon measurement. Instead,
we can only measure a small portion of the entire system,
which what makes the observables very local.

Suppose there is a closed quantum system such that
it is initially in the pure state |¢p) and its dynamics are
described by a time independent Hamiltonian H that has
energy eigenvectors |m) with eigenvalues E,,, H |m) =
E,, m).t If we want to find the time-evolving state of
the system |1(t)), we use the corresponding Schiodinger
equation, which is expressed as ih% l(t)) = H |[¢(t)) =
E., |¥(t)). The time-evolving state of the closed quantum
system can be expressed as the following,'

—iBmt

(1)) = 37 Crne =7 ) (20)

where Cp,, = (m|y(0)) = (m|ypy). Now that we have
an expression for the time evolution of the state of the
closed quantum system, we can shift directions to ana-
lyzing the time averaged expectation value of the observ-
able O(t) = (¢ (t)| O |¢(t)). Using this time dependent
evolution of the state vector, the time evolution of the

observable O(t) = (1(t)| O |1)(t)) can be expressed as

O) = Y 1Cul?Omm+ Y Co,Cre™ 7 O (21)
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where Oy, = (m|O|n)." Here it can be seen that the
time averaged expectation value O(t) is expressed in
terms of expectation values of these observables under
energy eigenstates |m) and |n), Opp, and Oy If we take
the long time average of O(t), the second term in (21) will
go to zero (due to exponential decay with system size)
under the assumption that there are no degeneracies. On
the other hand, the microcanonical average in the quan-
tum setting involves averaging over all eigenstates within
a small energy window AE.'0 For large systems, this en-
ergy window AFE is very small, and this itself contains
many eigenstates. The microcanonical average value is
given by averaging over all the energy eigenstates in this
window, which is centered around the mean energy of the
initial state of the system.!? The microcanonical average
of the observable O is expressed as the following,'?

1

0= v
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where Nejgen, is the number of eigenstates in the small
energy window AFE. In order for thermalization to occur
for this closed quantum system, the microcanonical av-
erage O in (22) must equal the long time average value
of (21), which is just the first term >, |Cy,|?Opyrm. This
equivalence is the challenge of defining thermalization in
closed quantum systems. It is then natural to ask if there
is a way to reconcile this problem.

If we draw the Hamiltonian H out of RMT, we can
use the notion of observables under RMT (17). This
states that the diagonal elements of the observable, O,
is independent of energy eigenstate |m) and that the off-
diagonal elements O,,, are exponentially small in sys-
tem size.! Applying these statements from RMT, the
first term in (21) will then become >  |Cp|*Omp =~
O, |Cn|?> = O. The second term of (21) will van-
ish since the off-diagonal elements become uncorrelated.
If we denote the long time average of O(t) as (O(t)) L,
then the above arguments make (O(t))rr = O, which
is essentially the long time average of the observable is
equal to the microcanonical average, a statement of ther-
malization.

In practice, RMT is not enough to describe observables
in physical systems. As we have seen above, we were only
able to see the microcanonical average equal to the long
time average of the observable when we assumed that the
Hamiltonian H of the closed quantum system was drawn
from RMT, meaning that the H matrix is a dense matrix.
However, in a physical system, the Hamiltonian is sparse
and local. A certain generalization of RMT is necessary
to account for observables in real systems, which was
done by Srednicki who made an ansatz known as the
Eigenstate Thermalization Hypothesis (ETH).146.



C. Eigenstate Thermalization Hypothesis (ETH)

Srednicki made the following ansatz that will generally
hold for physical observables,*~6

Omn = O(E)émn + e_S(E)/Qf(E’w)Rm” (23)

where F = (E,,, + E,)/2,w = E,, — E,, and S(F) is the
thermodynamic entropy at the argument energy F that is
given by, e(¥) = EY" §(E — E,,). The functions O(E)
and f(F,w) are smooth functions with respect to their
arguments and R,,, is a real or complex numerical factor
that varies randomly with m and n such that R2,, =1
and |R,,|? = 1. Note that the observable represented
in this ansatz is constructed by taking the eigenstates
of the Hamiltonian as the basis. If the Hamiltonian of
the system obeys time-reversal symmetry, the eigenstate
components are real hence the matrix components of the
observables are real as well. If time reversal symmetry
is broken, the matrix components of the observables are
complex values. Without losing generality, we can take
the function f(F,w) to be an even function in the ar-
gument w.! Taking the Hermitian conjugate of equation
(14), the random numerics R,,, and the function f(E,w),
satisfies Ry = Rum and f(E, —w) = f(F,w) for a sys-
tem with time reversal symmetry and R,,, = R}, and
f(E,—w)* = f(E,w) for a system without time reversal
symmetry.

Comparing this ETH ansatz with the RMT prediction
of the observables given in equation (17), the diagonal
elements in the ansatz, O(FE), are no longer same val-
ues, but smooth functions in their arguments F and w.
On the other hand, the off-diagonal elements contain a
thermodynamic entropy factor to account for the ther-
mal fluctuations in physical systems and a smooth func-
tion f(F,w). As stated previously, the ansatz is also a
generalization of the RMT prediction of observables in
(17). The ETH ansatz reduces to the RMT prediction
in a narrow energy window called the Thouless energy
Er, a measure of particles’ sensitivity to feel the bound-
aries of the system expressed in terms of energy.? In fact,
Er is the smallest possible energy window. It is defined
as Ep = TLL—D where L is the edge length of the system
and D is the diffusion constant. If the energy level sep-
aration w satisfies w < Er, then the function f(F,w) is
constant in that region because it is smooth in its ar-
guments. Giving such restriction to w makes the ETH
ansatz approximately equal to RMT prediction for the
observables shown in equation (17). Note that this re-
duction to ETH to RMT occurs only for diffusive systems
with diffusion time ¢ longer than L2. Diffusion is in fact a
result of physical systems with local interactions leading
to local Hamiltonians. Once w < Er is not satisfied, the
ETH ansatz will no longer appear as a RMT prediction.
From the argument made here, it seems RMT is use-
less because of its restrictive necessary condition. Notice
however, that as the system size increases, energy level
spacings become closer together. Even in the restriction
that w < Er, there are exponentially many energy levels

where RMT applies. In this way, RMT and ETH are
related to each other with latter being the generalization
of the former.

D. ETH and Thermalization

As stated in the introduction, von Neumann stated in
his theorem, the quantum ergodic theorem, that a macro-
scopic observable will relax to a microcanonical distri-
bution at later times.! In this section, by following this
theorem, it will be explicitly shown how the concept of
thermalization is related to ETH.

In this theorem,von Neumann considered a quantum
system with N interacting particles confined in a fi-
nite volume. Due to the confinement of the system
in a closed space, the Hamiltonian H governing the
system will form discrete energy levels Ej, such that
H|m) = E,, |m) where |m) is the corresponding eigen-
states or the orthonormal basis of the system’s Hilbert
space H of dimension d. The theorem focuses in the mi-
crocanonical energy window 0F, so it can be expected
that E,, € (E —0E/2,E + §E/2). In this window, we
can define an arbitrary state ¢ in terms of eigenstates |m)
such that |¢) = Cy, |m) where Cy, = (m|y). The total
Hilbert space H can be decomposed in terms of mutu-
ally orthogonal Hilbert subspaces such that H = @@, H,,
and d = ) d, where H, refers to the Hilbert space of
microstate v and d, as its dimensionality. What von
Neumann meant when he said ”macroscopic” is that
it is built upon microstates v. The macroscopic ob-
servable O = ZV O, P, where P, is the projector to
H,. Let O(t) be the observable at time ¢ such that
Ot) = (W]e " Oe™n" |1p). The microcanonical aver-
age is given as (O)ye = ), (m|O|m) /d. We then
require for H to not have any nondegenerate energies,
E, —FE, # E,  — E, unless m = m/,n = n’ or
m =n,m = n’. The central statement of the quantum
ergodic theorem is of the following,'?

)\’
F:mix|<m|PV|m>|2+max<<m|Py|m>—d .
(24)
If F is exponentially small, then |O(t) — (O)yp|* <
€(O?%) g where § is a small number. If we compute for

the expectation value of the observable O, we find the
diagonal components as

A d, m }5,, m
<m|0|m>%20yg: > oy%

meH,v
o, miOm (29
d
meH
= (O)ue
where ) 5 (m| P, |m).! This states that the diago-

nal components are equal to the microcanonical average



value, which is indeed what von Neumann stated in the
theorem. For the off-diagonal components,on the other
hand, we find,

(m|Oln) =Y O, (m| P, |m). (26)

However from (24), it is required that (m| B, |m) is ex-
ponentially small and O, is a finite physical observable;
therefore, the off-diagonal components are exponentially
small in system size.! Note that O,,,, = (m|O |m) and
Opmn = (m|O|n). What is significant about this results
is that this approximately equal to the RMT prediction
for observables presented in (17), which in other words,
ETH in Thouless energy window dE ~ Er.

V. CONCLUSION

In this paper, the main results from RMT, quantum
chaos, and ETH has been surveyed. One can say that

RMT is deeply rooted in the theory behind quantum
chaos and ETH. Using RMT, one is allowed to find the
distributions for energy level spacings. If the the energy
level spacing of a quantum system follows the Wigner-
Dyson distribution, then the system is said to be a quan-
tum chaotic system. If on other hand, the spacing follow
Poisson distribution, then the system is said to be quan-
tum integrable system. Therefore, RMT can be used as
an indicator for whether the system is chaotic or not. As
in quantum chaos, ETH is also deeply related to RMT.
ETH was formulated to understand thermalization of ob-
servables in physical systems. ETH is actually a general-
ization of RMT in a way that ETH reduces to the RMT
prediction of observables when considering energy level
spacing within the Thouless energy window. It is re-
markable how powerful RMT is in establishing methods
to probe quantum chaos and acting as a basis for ETH.

! Luca D’Alessio, Yariv Kafri, Anatoli Polkovnikov and Mar-
cos Rigol, “From quantum chaos and eigenstate thermal-
ization to statistical mechanics and thermodynamics,” Ad-
vances in Physics, 65:3, 239-362 (2016).

Robert C. Hilborn, Chaos and Nonlinear Dynamics: An
Introduction for Scientists and Engineers Oxford Univer-
sity Press, New York, 2000.

3 0. Bohigas, M. J. Giannoni, and C.
Schmit, “Characterization of Chaotic Quantum Spec-
tra and Universality of Level Fluctuation Laws” Phys.
Rev. Lett. 52, 1 (1984).

Mark Srednicki,“Chaos and quantum thermalization,”
Phys. Rev. E. 50, 888 (1994).

Mark Srednicki, “Thermal fluctuations in quantized chaotic
systems,” J. Phys. A. 29.4, 175 (1996).

Mark Srednicki, “The approach to thermal equilibrium in
quantized chaotic systems,” J. Phys. A. 32.7, 1163 (1999).

7 Y. Alhassid, “The statistical theory of quantum dots,” Rev.

Mod. Phys. 72 895 (2000).

E. Akkermans and G. Montambaux, Mesoscopic Physics of

Electrons and Photons, Cambridge University Press, New

York, 2007.

Goldstein, S., Lebowitz, J., Tumulka, R. et al. Long-time

behavior of macroscopic quantum systems. EPJ H 35,

173-200 (2010).

Joshua M Deutsch, “Eigenstate thermalization hypothe-

sis,” Rep. Prog. Phys. 81 082001 (2018).

11 R. Nandkishore, D. Huse, “Many-body Localization and
Thermalization in Quantum Statistical Mechaincs,” Annu.
Rev. Condens. Matter Phys. 2015. 6:15-38 (2015).

12 M. Rigol, V. Dunjko and M. Olshanii Nature 452 854
(2008).

8

©

10



	Introduction
	Classical chaos
	Phase space and Liouville's Theorem
	Integrable and nonintegrable systems

	Random Matrix Theory and Quantum Chaos
	Random Matrix Ensembles and Wigner-Dyson Distributions
	Matrix elements of observables
	Quantum Integrability

	Eigenstate thermalization
	Classical Thermalization
	Quantum Thermalization
	Eigenstate Thermalization Hypothesis (ETH)
	ETH and Thermalization

	Conclusion
	References

