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One of the main paradoxes while developing a theory of quantum gravity is how to resolve the
tension between the information loss that we expect in black holes with the understanding that no
information is lost in a quantum theory. This is the setup where information goes into the black
hole at finite time, the black hole evaporates at a large time, and we check if we can recover the
information after the black hole disappears. The calculations done by Hawking1 showed that this is
not possible. The holographic principle, and AdS/CFT duality in particular, has emerged recently
as the most promising theory of quantum gravity. It allows us to map a quantum gravitational
picture into a pure quantum field theory without gravity and vice versa. This makes preparation
and analysis simpler, as we have more options to work with. We present a review of Akers et al2

that provides two holographic models of black hole evaporation. While superficially similar, one of
these models predicts information loss, while the other does not. They attempt to clarify why recent
models of black holes seem to conserve information, in apparent contradiction to Hawking’s famous
calculations. In particular, they keep the relation between the bulk geometry and the boundary
explicit.
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I. BACKGROUND

A. AdS/CFT

AdS/CFT duality3, and more generally the
gauge/gravity duality, is the idea that for every
theory of gravity, there is a quantum field theory in the
limit, and most concepts on one have a mapping in the
other one. In it’s most concrete iteration, it shows that
we can obtain a conformal field theory (CFT) dual to
the Anti-de Sitter (AdS) space. In particular, we have
a duality between operators in the CFT and AdS. One
way to construct this operator correspondance is by
taking the large radius limit of AdS.

Thus we have quantum gravity in asymptotically AdS
space in the center (bulk) and a quantum field theory
without gravity in the boundary. We will be working
with AdS3/CFT2, visualized in 1, which means that our
theory will have two space dimensions plus one time di-
mension in the bulk, and one space dimension plus one
time dimension in the boundary. A nice characteristic
of this model is that gravitational waves do not exist,
simplifying a lot of the needed results.

B. Black holes in AdS/CFT

Anti de-Sitter space is the maximally symmetric space
with constant negative curvature. This curvature induces
a scale, called L = LAdS . In AdS space there are two
kinds of stationary (Schwarschild) black holes. We have

FIG. 1: Visualization of AdS3/CFT2 space

small black holes, that is black holes with radius smaller
than the AdS scale, which are thermodynamically unsta-
ble. They evaporate but do so in an extreme way4. This
is because, by being smaller than the AdS scale, they are
essentially in flat space - which results in its disintegra-
tion, since flat space is not able to support black holes.
To set up an equivalent scenario as the one proposed by
Hawking1 we need slow dynamics. Additionally, this in-
stability means they have not been studied as much.

We also have large black holes, that is black holes with
radius bigger than the AdS scale, which are stable. Since
they are bigger than the AdS scale, the curvature starts
affecting them. In essence, the asymptotic AdS space
acts as a box, and it make the black hole be will be in
equilibrium with a radiation bath. Thus the large black
holes will reabsorb radiation faster than they evaporate,
and reach a thermal equilibrium. They have a positive
specific heat and they do not disappear at late times.
This stability makes their connection to CFT simpler.
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We want to be working with these latter black holes.
To induce evaporation, we will couple the CFT with an
external system, so that radiation does not bounce back.
More precisely, we will be connecting a main CFT addi-
tional CFTs to create stable wormholes between them,
shifting the thermal equilibrium. We will be manually
driving evaporation forward through each coupling step.

An eternal black hole in AdS5 at temperature T has
as a dual in the CFT the thermal density state

ρTDS =
∑
i

pi |Ψi〉 〈Ψi| ∝ e−βEi |Ψi〉 〈Ψi|

Here β−1 = kBT and kB is the Boltzmann constant,
and |Ψi〉 is the eigenstate of the CFT at energy Ei. Recall
that β is inversely proportional to the radius of the black
hole.

Note that there are two notions of entropy here. The
first one is the entropy in the CFT picture, von Neumann
entropy, which we can calculate from the above state.
Recall that for a general state ρ this is given by6

SCFT = −Tr(ρ ln ρ)

The second one is the entropy in the geometric picture,
given by the Ryu-Takayanagi formula7. We can think of
this as a variant to the Bekenstein-Hawking entropy. For
a region A, this is given by

SAdS =
Area(γ)

4GN

where γ is the Hubeny, Rangamani, and Takayanagi
(HRT) surface, which is the extremal surface of minimal
area and GN is the gravitational constant. For our pur-
poses, this is the area of the smallest cut possible cut
that separates the region A from the rest. In our case,
we will be separating the main black hole from the rest.

Finally, we have that black holes in AdS3 satisfy the

energy-entropy relation S = 2π
√

E
3 . In terms of the

area, this means that A = 8GNπ
√

E
3 . Note that ”area”

for AdS3 refers to the length of the boundary, since we
are dealing with 2 space dimensions8.

C. Simple Wormholes and multi-boundary
wormholes

Wormholes can also be viewed throught the lens of
AdS/CFT. In particular, Schwarzschild wormhole in the
AdS/CFT view are understood to be duals of the ther-
mofield double state. That is, given two identical CFTs,
we can construct the entangled state9

FIG. 2: Example of wormhole

FIG. 3: Example of multi-boundary wormhole

|TFD〉 =
∑
i

e−βEi |Ψi〉0 |Ψi〉1

where the reduced density matrix on each side is given
by the thermal density state. This backs up the inter-
pretation of the state as a wormhole. This interpretation
is the core of the conjecture ER=EPR10. We have that
β−1 = r

2πLAdS
, where r is the horizon radius11. Here we

are looking at a wormhole with the same radius on each
side. See figure 2.

One of the tools we use to construct one of the two
models are multi-boundary wormholes11, as in 3. The
extra mouths of the wormhole, from the point of view
of these models, will be created from black hole evapo-
ration. In the CFT picture, this is a multi-CFT gener-
alization of the thermofield double. Note that the above
describes a wormhole where each mouth of the wormhole
is of the same radius. The corresponding expression for
more general geometries is more complicated. Invoking
the duality will give us great leverage here.

Going forward, we will work with AdS3/CFT2, since
it will simplify the analysis. We want to understand how
to prepare the different wormholes that we need, as well
as the relation between the parameters in the state and
the parameters of the black hole.

We will first focus on the case of the simple |TFD〉
state. To prepare this state, we can take a cylinder with
a CFT in each side, and compute an euclidean path in-
tegral. The β parameter will be given by the conformal
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modulus of the cylinder. In general, we can consider a
general Riemann surface connecting several CFTs, and
then take an euclidean path integral along the bound-
aries to create a multi-boundary black hole, as proposed
in11.

We note that for our purposes, we only care that the
state can be prepared. Whether we do this with an eu-
clidean path integral or with another method will not
affect our results.

II. MODELS

We present two alternative models for the information
paradox in black holes. One of our models will preserve
information and the other will lose it. Recall that the
relevant metric to measure is the entropy of the state
outside the black hole. In both cases this state will start
pure. In the information conservation case this will be
approximately zero at late times, while in the information
loss case this will be high at late times.

We avoid direct entropy calculation, and instead strive
to get a result purely from the geometry, more precisely
from the comparison of few HRT alternatives. For this,
we work directly within AdS3/CFT2. As mentioned be-
fore, the lack of gravitational waves simplifies the results.
In particular, quantum gravitational corrections go away.
Our plan is to describe the relevant state in, describe the
evolution of the state, and the mapping through time in
the gravitational picture.

It bears emphasizing that we manipulate the CFT, and
we analyze the AdS. Both states start at the same state,
and both black holes end up being evaporated. However,
the path they take to get there, and in particular the
geometry of the entanglement, determines if information
is lost or not.

We assume we have n + 1 CFTs, with large enough
n, labeled from 0 to n. We have a black hole of radius
r >> LAdS in CFT0 and the vacuum state in the rest.
Our operations won’t change the energy of the collection,
so we will have a constant energy through the process.
This means that the square of the length of the HRT
surfaces will be constant, by the energy-entropy relation.

A. Information conservation

In the information conservation, at each time step the
black hole evaporation process produces an additional
boundary in a wormhole. The possible HRT surfaces are
”entrance”, where the wormhole has the opening towards
the main black hole, and the alternative is the union
of the additional boundaries. Through time, the min-
imum between these two first increases, then decreases
and reaches 0 again. We interpret this as information
conservation at late times. We can see a visualization of
this in 4.

FIG. 4: Evolution of the information conservation model.
Note that there is just a single multi-boundary wormhole.

In higher detail, consider n CFTs, one of them dual to
a black hole of radius r >> LAdS and the rest in vacuum
state. We label the CFT with the original black hole as
CFT0.

By coupling CFT0 with CFT1, we can create a worm-
hole connecting the two spaces. We choose the coupling
so that the radius of the wormhole in CFT1 is just above
LAdS . We now want to compute the entropy of the initial
black hole. Suppose the new radius of the black hole in
CFT0 is r1. Then we have that r21 + L2

AdS = r2. We

have that r1 =
√
r2 − L2

AdS . Since the entropy will be
the area of the extremal surface separating CFT0 from
the rest, it will be the minimum between r1 and LAdS .
Since we assume r >> LAdS , we have r1 > LAdS , so we
have that the entropy a this point will be LAdS · 2π

4GN
.

We then couple this wormhole with CFT2, creating
a multi-boundary wormhole between CFT0, CFT1, and
CFT2. We do the coupling so that CFT2 has a radius of
length LAdS . Suppose now that the black hole in CFT0
has radius r2. Then we have r22 + 2L2

AdS = r2. Thus

r2 =
√
r2 − 2L2

AdS . There are two options for separat-
ing CFT0 from CFT1 and CFT2. Either the boundaries
around the black holes in CFT1 and CFT2 or the bound-
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FIG. 5: Page curve of the information conservation model.
The dotted line is the alternative page curve, and the diverg-
ing point.

ary of the black hole in CFT2. The minimum of this is
2π(2LAdS). Thus the entropy will be (2LAdS) · 2π

4GN
.

In general, at the k-th step, we will have a multi-
boundary wormhole between CFT0, CFT1, . . ., and
CFTk. We will have that CFTi will be have black hole
of radius LAdS for i > 0, and CFT0 will have a black
hole of radius rk =

√
r2 − kL2

AdS . The entropy will be

min(rk, kLAdS) · 2π
4GN

.

For early times, roughly k < r
LAdS

, we will have that
the minimum between these two lengths will be kLAdS .
Thus the entropy will be kLAdS · 2π

4GN
. Note how this is

increasing in k.

For late times, roughly k > r
LAdS

, the latter term be-

comes dominant, so the entropy becomes rk · 2π
4GN

=√
r2 − kL2

AdS ·
2π

4GN
. This is decreasing in k. So the

entropy eventually starts decreasing.

We can continue until rk ≈ LAdS , which happens at

k ≈ r2

L2
AdS

. At the end, we end up with a multi-partite

wormhole between kf ≈ r2

L2
AdS

CFTs, each containing a

minimally viable large black hole. The entropy at this
point is just over LAdS · 2π

4GN
, which is essentially zero for

our purposes. So CFT0 ends up (essentially) pure at the
end.

Thus evaporating the model in this way, we recover
(essentially) all the information. In summary, we have
the following page curve12 in figure 5.

FIG. 6: Evolution of the information loss model. Note that
the wormholes are disjoint.

B. Information loss

In the information loss model, at each time step the
black hole evaporation produces an additional copy of the
thermofield double state. The relevant HRT is the union
of the cross-section of each thermofield double. The total
area is constant through time. We interpret this as the
traditional information loss computation. We can see a
visualization of this process in 6.

In higher detail, consider n CFTs, one of them dual to
a black hole of radius r >> LAdS and the rest in vacuum
state. We label the CFT with the original black hole as
CFT0. At this point, before any operation, this CFT is
in a pure state, so it has an entropy of zero.

By coupling CFT0 with CFT1, we can create a worm-
hole connecting the two spaces. We again choose the
coupling so that the radius of the wormhole in CFT1 is
just above LAdS . At this point, the situation is identi-
cal to the information conservation case, so we get an
entropy of LAdS · 2π

4GN
.

The distinction comes in step 2 and forward. We now
couple the black hole in CFT0 with CFT2, creating a
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FIG. 7: Page curve of the information loss model. The dotted
line is the alternative page curve, and the diverging point.

wormhole between CFT0 and CFT2, in addition, and
more importantly disjoint, to the existing wormhole be-
tween CFT0 and CFT2. Since they are disjoint, the min-
imal surface separating CFT0 from the rest is just the
union of the surfaces separating CFT0 from CFT1 and

CFT0 from CFT2. Individually each area is 2πLAdS .
Together the areas will be 4πLAdS . So we get an entropy
of 2LAdS · 2π

4GN

In general, at the k-th step, we will have a k disjoint
wormholes between CFT0 and CFTi, for i = 1, . . . , k.
The minimal surface separating CFT0 from the rest is
the addition of the the minimal surfaces separating CFT0
from CFTi. Individually each will be 2πLAdS , so in total
we will have 2π(kLAdS). Thus the entropy will be kLAdS ·
2π

4GN
.

Note that this answer only depends linearly on k. The
behavior with respect to k be the same regardless if we
are at early or at a late time. As before, we can continue

until k ≈ r2

L2
AdS

. This means that the entropy at the end

will be approximately r2

LAdS
· 2π
4GN

.

Thus we do not recover the entropy, and CFT0 ends
up significantly mixed at the end. In summary, we have
the following page curve in figure 7.

III. DISCUSSION

Despite the technical complexity necessary to consider
this model, the ideas are in essence very simple. Whether
information is lost or not depends on the geometry of
entanglement. Is radiation going out in a way that is in-
dependent each time-step, or is it entangled throughout?

1 S. W. Hawking, Communications in Mathematical Physics
43, 199 (1975).

2 C. Akers, N. Engelhardt, and D. Harlow, Simple
holographic models of black hole evaporation (2019),
1910.00972.

3 J. Maldacena, International Journal of Theoretical Physics
38, 1113–1133 (1999), ISSN 0020-7748, URL http://dx.

doi.org/10.1023/A:1026654312961.
4 N. Jokela, A. Pönni, and A. Vuorinen, Physical Review D
93 (2016), ISSN 2470-0029, URL http://dx.doi.org/10.

1103/PhysRevD.93.086004.
5 J. Maldacena, Journal of High Energy Physics 2003,

021–021 (2003), ISSN 1029-8479, URL http://dx.doi.

org/10.1088/1126-6708/2003/04/021.
6 I. Bengtsson and K. Zyczkowski, Geometry of Quantum
States: An Introduction to Quantum Entanglement (Cam-
bridge University Press, 2006).

7 S. Ryu and T. Takayanagi, Physical Review Letters 96
(2006), ISSN 1079-7114, URL http://dx.doi.org/10.

1103/PhysRevLett.96.181602.
8 N. Tetradis, Journal of High Energy Physics 2012

(2012), ISSN 1029-8479, URL http://dx.doi.org/10.

1007/JHEP02(2012)054.
9 W. Cottrell, B. Freivogel, D. M. Hofman, and S. F.

Lokhande, Journal of High Energy Physics 2019
(2019), ISSN 1029-8479, URL http://dx.doi.org/10.

1007/JHEP02(2019)058.
10 J. Maldacena and L. Susskind, Fortschritte der Physik 61,

781–811 (2013), ISSN 0015-8208, URL http://dx.doi.

org/10.1002/prop.201300020.
11 V. Balasubramanian, P. Hayden, A. Maloney, D. Marolf,

and S. F. Ross, Classical and Quantum Gravity 31, 185015
(2014), ISSN 1361-6382, URL http://dx.doi.org/10.

1088/0264-9381/31/18/185015.
12 D. N. Page, Physical Review Letters 71, 3743–3746

(1993), ISSN 0031-9007, URL http://dx.doi.org/10.

1103/PhysRevLett.71.3743.

http://dx.doi.org/10.1023/A:1026654312961
http://dx.doi.org/10.1023/A:1026654312961
http://dx.doi.org/10.1103/PhysRevD.93.086004
http://dx.doi.org/10.1103/PhysRevD.93.086004
http://dx.doi.org/10.1088/1126-6708/2003/04/021
http://dx.doi.org/10.1088/1126-6708/2003/04/021
http://dx.doi.org/10.1103/PhysRevLett.96.181602
http://dx.doi.org/10.1103/PhysRevLett.96.181602
http://dx.doi.org/10.1007/JHEP02(2012)054
http://dx.doi.org/10.1007/JHEP02(2012)054
http://dx.doi.org/10.1007/JHEP02(2019)058
http://dx.doi.org/10.1007/JHEP02(2019)058
http://dx.doi.org/10.1002/prop.201300020
http://dx.doi.org/10.1002/prop.201300020
http://dx.doi.org/10.1088/0264-9381/31/18/185015
http://dx.doi.org/10.1088/0264-9381/31/18/185015
http://dx.doi.org/10.1103/PhysRevLett.71.3743
http://dx.doi.org/10.1103/PhysRevLett.71.3743

	Background
	AdS/CFT
	Black holes in AdS/CFT
	Simple Wormholes and multi-boundary wormholes

	Models
	Information conservation
	Information loss

	Discussion
	References

