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Silicon oxycarbide glass-graphene composite paper
electrode for long-cycle lithium-ion batteries
Lamuel David1, Romil Bhandavat1, Uriel Barrera1 & Gurpreet Singh1

Silicon and graphene are promising anode materials for lithium-ion batteries because of their

high theoretical capacity; however, low volumetric energy density, poor efficiency and

instability in high loading electrodes limit their practical application. Here we report a large

area (approximately 15 cm� 2.5 cm) self-standing anode material consisting of molecular

precursor-derived silicon oxycarbide glass particles embedded in a chemically-modified

reduced graphene oxide matrix. The porous reduced graphene oxide matrix serves as an

effective electron conductor and current collector with a stable mechanical structure, and the

amorphous silicon oxycarbide particles cycle lithium-ions with high Coulombic efficiency.

The paper electrode (mass loading of 2 mg cm� 2) delivers a charge capacity of

B588 mAh g� 1
electrode (B393 mAh cm� 3

electrode) at 1,020th cycle and shows no evidence

of mechanical failure. Elimination of inactive ingredients such as metal current collector and

polymeric binder reduces the total electrode weight and may provide the means to produce

efficient lightweight batteries.
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C
oncentrated efforts are currently employed to discover a
practical replacement for traditional Li-ion battery
electrodes that is, graphite anode and LiCoO2 cathode

with materials that continuously deliver high power and energy
densities at high cycling efficiencies without damage1–5.
Alloying reaction electrodes such as silicon that can deliver as
much as 5–10 times higher discharge capacity than traditional
graphite, are at the forefront of this research. High capacity
electrodes, however, are prone to enormous volume changes
(B300%) that generally lead to structural collapse and capacity
fading during successive lithiation/delithiation6–12. Recent
work has shown that decreasing particle size or electrode
nanostructuring allows the electrode to withstand high
volumetric strains associated with repeated Li alloying and de-
alloying. Pomegranate-inspired carbon-coated Si nanoparticles,
yoke shell-structured SiC nanocomposites and Si/C core/shell
composites (prepared at low mass loading) have proven to survive
several hundred cycles without damage9–13. Yet, electrode
nanostructuring has lead to new fundamental challenges such
as low volumetric capacity (low tap density), increased electrical
resistance between the nanoparticles, increased manufacturing
costs and lower Coulombic efficiency due to side reactions with
the electrolyte. These challenges have not been fully addressed.
What’s more, a particle-based electrode’s long-term cyclability
hinges on the inter-particle electrical connection and particle
adhesion to the metallic substrate, which decreases rapidly
with increasing charge/discharge cycles, particularly for thick
high-loading electrodes9.

In this context, the graphene-based multicomponent composite
anodes are an attractive alternative to traditional (binder and
carbon-black) designs, chiefly because of graphene’s superior
electronic conductivity, mechanical strength and ability to be
interfaced with Li active redox components, such as particles of
Si, Ge, and transition metals sulfides/oxides resulting in electrodes
that are intrinsically conducting and promote faster ion
diffusion14� 38. Additional advantages include weight savings of
up to 10% of the total battery weight7, if the electrode is prepared
in the freestanding form, improved corrosion resistance
(elimination of metal foil), and enhanced flexibility, particularly
for bendable, implantable, and roll-up electronics.

In spite of these advantages, graphene-paper electrodes do not
offer an absolute solution because of the following associative
disadvantages: (a) potential limiting of overall battery capacity
due to insufficient active mass (thickness generally limited to
submicrometers), (b) expensive techniques required for synthesis
of Li-redox components and (c) more important, paper anodes
generally show very high first cycle loss (50–60%), low cycling
efficiency (95–98%) and poor capacity retention at high current
densities (damage at high C-rates)23–39, making graphene-paper
electrodes somewhat impractical for use in an Li-ion battery full-
cell. Here again, very few studies have been performed to
investigate the mechanical and fracture properties of composite
paper-based electrodes.

Continued search for better anodes has brought attention to
unique, rarely studied molecular precursor-derived Si-based
glass-ceramics (such as silicon oxycarbide or SiOC and silicon
carbonitride or SiCN) materials40–50. SiOC is a high-temperature
glass-ceramic with an open polymer-like network structure
consisting of two interpenetrating amorphous phases of SiOC
(Si bonded to O and C) and disordered carbon42. Its low weight
density (B2.1 g cm� 3) and open structure enables high charge
and discharge rates with a gravimetric capacity more than twice
that of commercial graphite electrode. More important, major
portion of the electrochemical capacity in SiOC is due to
reversible Li-adsorption in the disordered carbon phase and not
the conventional alloying reaction with Si, ensuing relatively

lower volumetric changes43,44. Regrettably, the glass-ceramics
that show high lithiation capacity are poor conductors of
electronic/ionic current and consequently the electrode
preparation involves incorporation of conducting agents and
binders in order to hold the particles on a metal current collector,
a method known as screen printing45–47. Such foil-based
electrodes carry the dead weight of conducting agents,
polymeric binders, and the metal foil that do not contribute
towards the battery capacity.

As an attractive solution to screen printed electrodes, we
present our results related to fabrication of a well-organized,
interleaved, freestanding, large-area composite anode consisting
of SiOC particles supported by crumpled reduced graphene
oxide matrix. The electrode delivers higher volumetric capacity
than the recently reported pomegranate Si/carbon nanotube
(310 mAh cm� 3) paper-electrode9. Large micrometer size
reduced graphene oxide (rGO) sheets serve as host material to
SiOC particles, providing the necessary electronic path and
consistent cycling performance at high current densities along
with high structural stability. Because of their unique
nanodomain amorphous structure, SiOC particles offer required
chemical and thermodynamic stability and high Li intercalation
capacity for the electrode. As a result the electrode (at least
2 mg cm� 2 weight loading) has first cycle charge capacity of
702 mAh g� 1

electrode (total weight of electrode considered) and
B470 mAh cm� 3

electrode (total volume of electrode considered)
at 100 mA g� 1

electrode and stable charge capacity of
543 mAh g� 1

electrode (B363 mAh cm� 3
electrode) at charge

current density of 2,400 mA g� 1
electrode. The capacity is

B200 mAh g� 1
electrode when cycled at B-15 �C. Further, the

composite electrode has exceptionally high strain-to-failure
(exceeds 2%) as measured in a uniaxial tensile test and the
mode of failure differ significantly from pristine rGO papers.

Results
Material synthesis and electrode fabrication. Polymer-derived
SiOC ceramic particles were prepared by controlled thermolysis
of 1,3,5,7-tetramethyl-1,3,5,7-tetravinylcyclotetrasiloxane (TTCS)
polymeric precursor while graphene oxide (GO) was prepared by
the modified Hummer’s method51 (for details, see Methods
section). The polymer-to-ceramic transformation was complete at
1,000 �C41. Detailed characterization of cross-linked polymer and
resulting SiOC material is presented in Fig. 1a–g. SEM images of
SiOC particles in Fig. 1a confirmed average particle size to be
B4 mm (with s.d.¼ 1.8 mm). X-ray photoelectron spectroscopy
(XPS) showed O 1s, C 1s, Si 2s, Si 2p and O 2s peaks for both
cross-linked and pyrolyzed SiOC ceramic (Fig. 1b). Close analysis
of the deconvoluted silicon band (for Si 2p photoelectrons) in
SiOC revealed the emergence of peaks at 103.5 and 102.2 eV,
corresponding to SiO4 and CSiO3 phases, respectively (Fig. 1c).
In addition, peaks at 534.5, 533.1 and 532.4 eV corresponding to
C¼O, SiO2 and Si–O phases, respectively, were observed in O 1s
band (Fig. 1d), whereas the C 1s band (Fig. 1e) was fitted with 3
peaks at 286.5, 284.5 and 284.7 eV corresponding to C¼O, C�C
and C� Si phases, respectively. Surface elemental composition
from XPS was measured to be C¼ 62.55 at% (50.35 wt%),
O¼ 25.73 at% (27.57 wt%) and Si¼ 11.72 at% (22.06 wt%). XPS
composition after 80 min of depth profiling (with 5 keV Ar-ion)
showed lower carbon and oxygen content of 50.78 at%
(34.47 wt%) and 18.44 at% (16.66 wt%), respectively with
Si at 30.78 at% (48.85 wt%) (see Supplementary Fig. 1). Bulk
composition of SiOC particles was also determined from
combustion and inert gas fusion techniques (see Supplementary
Fig. 2a,b and Methods section for details). The composition was
found to be C¼ 51.24 at% (38.3 wt%), O¼ 19.79 at% (19.7 wt%),
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H¼ 5.09 at% (0.31 wt%) and Si¼ 23.85 at% (41.68 wt%).
The elemental composition obtained from various techniques is
summarized in Supplementary Table 1. Raman spectroscopy of
SiOC particles was performed to further confirm the existence of
the free or excess carbon domains. As shown in Fig. 1f, five peaks
could be fitted into the spectrum: D1 or D-band (B1,330 cm� 1),
D2 (B1,615 cm� 1), D3 (B1,500 cm� 1), D4 (B1,220 cm� 1)
and the G-band (B1,590 cm� 1) 52. D1, D2 and D4 originate
from disordered graphitic lattice (graphene layer edges,
surface layers and polyenes and so on) while D3 is associated

with amorphous carbon soot. G-band corresponds to the ideal
graphitic lattice. In addition, two bumps centered at B2,640 (2*D
overtone) and B2,915 cm� 1 (DþG combination) were also
observed (Supplementary Fig. 3). Similarly, Fourier Transform
Infrared Spectroscopy (FTIR) analysis also confirmed
transformation of TTCS polymer to ceramic SiOC (Fig. 1g)41.
Based on spectroscopic evidence, the predicted chemical structure
of the cross-linked polymer and resultant ceramic is presented in
Supplementary Fig. 4, which is in agreement with previous work
on polymer-derived SiOC42.
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Figure 1 | Characterization of SiOC ceramic and SiOC/graphene composite papers. (a) SEM image of SiOC particles after pyrolysis of the polymeric

TTCS particles. Sharp glass-like particles decorated with sub-micron size particles were observed. Scale bar is 5 mm. (b) XPS survey scans for cross-linked

TTCS and pyrolyzed SiOC. High resolution XPS spectrum of pyrolyzed SiOC particles in the (c) Si 2p region, (d) O 1s region and (e) C 1s region were

consistent with the polymer-derived SiOC nanodomain model. Deconvoluted peaks indicate the various bonds between Si, C and O atoms that are distinct

to pyrolyzed SiOC. (f) Raman spectrum of SiOC showed peaks that are characteristic of graphite-like carbon (D1-peak: 1,350 cm� 1 and G-peak:

1,590 cm� 1). (g) Fourier Transform Infrared Spectroscopy spectra of SiOC and cross-linked TTCS (n: stretching vibration mode and d: bending vibration

mode). (h) Digital camera picture and schematic illustration of proposed hybrid structure of the freestanding paper along with the atomic structure of

pyrolyzed SiOC particle. (i) TEM image of SiOC/GO composite material. Large GO flakes covering SiOC particles (D) were observed. Scale bar is 500 nm.

(j) Corresponding TEM selected area electron diffraction pattern showed multiple spot pattern due to polycrystallinity of restacked GO sheets with faint

ring pattern attributed to amorphous SiOC material. (k) FIB cross-sectional EDX elemental map of 60SiOC paper in which Si, C and O are indicated by blue,

red and green, respectively. The scale bar is 5 mm. Additional TEM and SEM images are presented in Supplementary Figs. 6–8. (l) XRD of cross-linked

TTCS, SiOC particles, GO and composite papers before and after thermal reduction (annealing). Complete reduction of GO to rGO is illustrated in the plot.

(m) TGA curves of GO paper and unannealed composite paper measured from 30 to 800 �C (10 �C min� 1) in flowing air (20 ml min� 1). The weight

percentage of SiOC in the unannealed composite is as indicated in the figure.
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The composite papers were prepared following a vacuum
filtration technique (see Materials section for details and
schematic in Supplementary Fig. 5). Samples were labeled as
rGO, 10SiOC, 40SiOC, 60SiOC and 80SiOC for rGO paper
and GO with 10, 40, 60 and 80 wt% of SiOC in the paper,
respectively. The digital camera image and schematic in Fig. 1h
highlights the flexibility and structure of the composite paper,
respectively.

Morphology of the composite and thermally reduced
(annealed) freestanding papers was studied by electron and
focused ion beam (FIB) microscopy. The transmission electron
microscope (TEM) image (Fig. 1i) showed large micrometer-sized
thin GO sheets along with random shape glass-like SiOC particles
(also see Supplementary Fig. 6a–e). Large SiOC particles were
seen to be covered with smaller nanometer size particles. The
graphene platelets seem to ocassionaly fold and cover individual
SiOC particles and other instances show GO being interlayered
by SiOC. EDX elemental mapping performed in scanning-TEM
mode (Supplementary Figs. 6a–e) confirmed the uniform
distribution of Si, O, C in the particles with higher concentration
of C observed near the edges possibly due to graphene platelets.
For the selected area electron diffraction pattern in Fig. 1j, the
multiple spot pattern is a result of polycrystallinity of restacked
GO sheets and the faint ring pattern is attributed to amorphous
SiOC material. The SEM images of the freestanding papers
showed a sheet-like structure with a relatively smooth top surface
for rGO paper53–56, which became increasingly rough and porous
with higher loading of SiOC particles in the composite (Supple-
mentary Fig. 7a–d). Cross-sectional SEM of the fractured samples
revealed ordered stacks of rGO with SiOC particles interlayered
between the sheets (Supplementary Fig. 7e–h). Several micro-
meter sized particles could be seen for 60SiOC specimen along with
clumped nanometer sized particles. Nonetheless, mechanically
fractured composite papers were largely uneven and showed signs
of damage to the interface. To obtain a smooth and defect-free
cross-section, the 60SiOC paper was sectioned by means of a FIB
milling (see Methods section and Supplementary Fig. 8a for details
regarding specimen preparation). The uniform distribution of
SiOC particles and wrapping by large-area graphene platelets could
be clearly observed in the electron beam (Supplementary Fig. 8b)
and ion-beam images (Supplementary Fig. 8c). Elemental mapping
by means of EDX (Fig. 1k and Supplementary Fig. 8d–f) further
established the inter-layered morphology of the composite.
Depending up on the SiOC content, the average thickness of the
papers varied between B20 and 30mm.

The reduction of GO (non-conducting) to rGO (conducting)
was confirmed by use of X-ray diffraction (XRD). As shown in
Fig. 1l, both GO and unannealed composite papers, had peaks at
11.05 and 9.8�, corresponding to interlayer spacing of 8 and 12 Å,
respectively. Interlayer spacing was large compared with that of
graphite (with major peak (002) at 26.53�, corresponding to
3.36 Å) because of oxygen functional groups present in GO and
water molecules held between the layers. After thermal annealing
at 500 �C for 2 h, the paper showed a broad peak at 2y¼ 26�,
typical of reduced GO material55,56. The broad peak observed in
the spectra suggests inhomogeneous spacing between the
layers. XRD spectra of cross-linked TTCS and SiOC particles
were both featureless, confirming the amorphous nature of these
ceramics (hallmark of these materials). Raman spectrum (Id/Ig)
pre and post thermal reduction showed a slight change in
accordance with previous reports (Supplementary Fig. 9)39.
Reduction of GO to rGO was verified by the disappearance of
oxide peaks in the high resolution XPS analysis of C 1s peak
(Supplementary Fig. 10).

Thermogravimetric analysis (TGA) was performed to ascertain
the mass loading of SiOC in the composite papers. Figure 1m

shows the percentage composition of filtered composite paper
prior to their thermal reduction. Significant weight loss was
observed in the 50–100 �C and 100–400 �C temperature ranges,
which is attributed to evaporation of trapped water molecules in
the GO and oxygen functionalities, respectively57–59. The
weight loss was highest for GO and lowest for 80SiOC (see
Supplementary Table 2). Final weight loss in the 400–800 �C
range is due to burning of carbon material. Comparatively, the
initial weight loss was not observed in thermally reduced
samples (mere 1.2% for rGO at 400 �C, Supplementary Fig. 11)
that suggests high degree of water removal and oxygen groups by
thermal annealing. Approximately 3% and 6–10% residue was
noted for GO and rGO material at B800 �C. As a result
SiOC content (or percentage weight remaining) in the thermally
reduced composite was higher than unannealed specimens; SiOC
content in 10SiOC, 40SiOC, 60SiOC and 80SiOC increased from
B10–30%, B50–65%, B65–78% and B83–92%, respectively. In
the traditional method of electrode preparation, active material
(including recently reported graphene embedded PDC material)
is mixed with polymeric binder and conductive agent in an
B80:10:10 ratio, followed by slurry coating on metal current
collector foil47. However, using the present method we have made
a freestanding and lightweight electrode, containing up to B78%
SiOC as active material and B22% of rGO (acting as binder and
conductive agent). Paper electrodes were directly utilized as the
working electrodes. Electrochemical performance is presented in
the following section.

Electrochemical performance. Figure 2a shows charge capacities
and columbic efficiency of rGO, 10SiOC, 40SiOC, 60SiOC
electrodes asymmetrically cycled at varying charge current
densities. For rGO, the first-cycle charge capacity at
100 mA g� 1

electrode was B210 mAh g� 1
electrode, it dropped to

B200 mAh g� 1
electrode in the second cycle, and then the charge

capacity stabilized at B180 mAh g� 1
electrode after five cycles.

When charge current density increased to 2,400 mA g� 1
electrode,

charge capacity was retained at B175 mAh g� 1
electrode.

Returning the current density back to 100 mA g� 1
electrode led to

the return of higher capacity of 192 mAh g� 1
electrode. High

irreversible first-cycle capacity results from electrochemical
reaction contributed to solid-electrolyte interphase (SEI) layer
formation. For the composite electrode, the first-cycle charge
capacity increased in correspondence to the percentage of SiOC
in the electrode. For example, 10SiOC showed 376 mAh g� 1

electrode, while 40SiOC and 60SiOC showed 546 mAh g� 1
electrode

and 702 mAh g� 1
electrode (volumetric capacity of B470 mAh

cm� 3
electrode), respectively. The 60SiOC capacity was lower than

the capacity calculation based on a ‘rule of mixture’ approach
(B793 mAh g� 1) with constituent rGO (first cycle reversible
capacity B210 mAh g� 1) at B22 wt% as lower bound and SiOC
(highest first cycle reversible capacity B958 mAh g� 1 from ref.
46) at B78 wt% as upper bound. Similar to rGO electrode, when
charge current density increased to 2,400 mA g� 1

electrode,
composites 10SiOC, 40SiOC and 60SiOC showed high
reversible capacity at 296, 417 and 543 mAh g� 1

electrode,
respectively. Capacity retention at 2,400 mA g� 1

electrode of
83.5% (compared with cycle number 5 at 100 mA g� 1

electrode)
and first-cycle efficiency of 68% for 60SiOC is among the highest
reported performances for a freestanding graphene-
based electrode (see Supplementary Table 3 and
Supplementary Table 4 for summary and comparison,
respectively)14–19,23,25,32,38. When charge current density was
lowered again to 100 mA g� 1

electrode at cycle number 31, charge
capacity increased to stable values of 304 mAh g� 1

electrode

(B80% retained), 471 mAh g� 1
electrode (B96% retained) and
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626 mAhg� 1
electrode (B97% retained) for 10SiOC, 40SiOC

and 60SiOC, respectively.
In order to test cyclic stability of the electrodes, the same cells

were subjected to symmetric cycling at a current density of
1,600 mA g� 1

electrode. Charge capacity for this test is shown in
Fig. 2b. Charge capacity of 60SiOC showed some decline as the
cells were subjected to prolong symmetric cycling at
1,600 mA g� 1

electrode. The capacity decay over the 970-cycle
range was observed to be approximately 0.075 mAh g� 1

electrode

per cycle. This decline was not observed in the rGO specimen,
thereby demonstrating the importance of graphene in the
composite material. Nonetheless, the average composite paper
capacity in this range was approximately three times higher than
pristine rGO electrode (B170 versus B58 mAh g� 1

electrode).
Most significantly, the cell capacities were B185 (rGO) and
568 mAh g� 1

electrode (60SiOC) at 1,010th cycle when the current
density was brought back to 100 mA g� 1

electrode and stabilized to
186 and 588 mAh g� 1

electrode, respectively at 1,020th cycle before
the tests were stopped for post-cycling analysis. This represents
B94% capacity retention for 60SiOC when compared with
capacity value at the 40th cycle prior to beginning of the long-
term cycling test (see Supplementary Table 3). No measureable
change in cycling efficiency of 60SiOC (B99.6%) was observed
during this period. This shows that, even after 1,020 cycles, the

composite electrode was robust and continued to function
without appreciable degradation.

Supplementary Fig. 12a shows voltage profiles of rGO for the
1st, 2nd and 1,010th cycle. Differential capacity profiles in
Supplementary Fig. 12b were similar to previous reports on rGO
electrodes, with a primary reduction peak at B50 mV, a
secondary reduction peak at B(520–560) mV, and an oxidation
peak at B(120–130) mV39. The peak at B50 mV, present in all
subsequent cycles, is associated with lithiation of graphitic
carbon, whereas the peak at B560 mV signifies formation of
SEI, which exists only in the first cycle. Supplementary Fig. 12c
and d show the voltage profile and differential capacity curves of
1st and 2nd cycle of 10SiOC, respectively. The first cycle
contained three reduction peaks at around B50, B240 and
B520 mV, attributed to rGO lithiation, irreversible LixSiOC
formation, and SEI formation, respectively39,41,45. In contrast,
only one subtle extraction peak at B110 mV is observed, which
represents rGO de-lithiation with an extended bulge at B500 mV
that represents LixSiOC de-lithiation38,45–47. As the SiOC content
increased to 40% (Supplementary Fig. 12e,f) and 60%
(see Fig. 2c,d), domination of SiOC lithiation increased, as
proven by increased intensity of the irreversible LixSiOC
formation peak at B(270–300) mV. Peak intensity of rGO
de-lithiation at B120 mV diminished with respect to LixSiOC
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Figure 2 | Electrochemical characteristics and proposed lithium storage mechanism. (a) Charge capacity and cycling efficiency of various paper

electrodes when cycled asymmetrically at increasing charge current densities. (b) Extended cycling behavior of rGO and 60SiOC electrodes cycled

symmetrically at 1,600 mA g� 1
electrode. After 970 cycles, the electrodes showed good recovery when the current density was lowered back to

100 mA g� 1
electrode. Insets show the post-cycling digital and SEM images of the dissembled rGO and 60SiOC electrodes. Scale bar is 10mm. (c) Voltage

profile of 60SiOC electrode and corresponding (d) differential capacity curves for 1st, 2nd and 1,010th cycle. (e) Cycling behavior of 60SiOC at sub-zero

temperature. After cooling down to B-15 �C, the cell demonstrated a stable charge capacity of B200 mAh g� 1
electrode at 100 mA g� 1

electrode. The cell

regained B86% of its initial capacity when returned to cycling at room temperature (B25 �C). (f) Schematic representing the mechanism of lithiation/

delithiation in SiOC particles. Majority of lithiation occurs via adsorption at disordered carbon phase, which is uniformly distributed in the SiOC amorphous

matrix. Large rGO sheets serve as an efficient electron conductor and elastic support.
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de-lithiation bulge at B500 mV. In addition, the 2nd and the
1,010th cycle charge/discharge and differential capacity curves of
the electrodes had similar profiles, showing that no new phases
formed even after more than 1,000 cycles. More importantly, the
efficiency of 60SiOC remained high throughout the cycling test.

Additional rate capability test involving extreme symmetric
cycling were performed on freshly prepared 60SiOC paper
electrode with even higher mass loading (approximately
3 mg cm� 2). The data is presented in Supplementary Fig. 13.
Stable capacity of B700 mAh g� 1

electrode was observed at
100 mA g� 1

electrode which decreased to B100 mAh g� 1
electrode

at 2,400 mA g� 1
electrode and showed complete recovery when the

current density was brought back to 100 mA g� 1
electrode. Such

stable performance is rarely reported for precursor-derived
ceramic materials even on traditionally prepared electrode
on copper foil where the current density and capacity are
reported with respect to the active material only46–48. Tests were
also conducted on 80SiOC specimen to ascertain if the charge
capacity of the freestanding paper-based electrodes can be
improved even further due to higher SiOC content. These
attempts, however, were not successful because electrodes
prepared at 80% SiOC loading were brittle and showed erratic
behavior after only a few initial cycles. First-cycle charge capacity
for 80SiOC was B762 mAh g� 1

electrode and showed domination
of LixSiOC lithiation (B330 mV) and delithiation (B500 mV)
over rGO peaks, similar to other composite electrodes
(Supplementary Fig. 14a,b). The 80SiOC electrode began to
demonstrate random spikes in charge capacity and efficiency with
increased cycle number at high C-rate possibly due to mechanical
disintegration and loss of electrical contact due to insufficient
rGO loading (Supplementary Fig. 15a). Crack could be observed
in the post-cycling SEM images (see Supplementary Fig. 15b–e).

Four-point electrical conductivity measurements were
performed and compared for all specimens (for details, see
Supplementary Note 1 and Supplementary Fig. 16). Data is
summarized in Supplementary Table 5. Although average
four-point resistance for 60SiOC (580O) was higher than rGO
paper (40O), it still represents an important achievement because
TTCS derived SiOC (under present pyrolysis conditions and for
the given composition) was observed to be poor electrical
conductor and the improved conductivity of the composite paper
(5� 10� 2 S cm� 1 versus B10� 12 S cm� 1 for SiOC powder41)
is key to better C� rate characteristics. This is more evident when
we compare the C� rate data for SiOC particle electrode
prepared on traditional copper current collectors46, where the
electrochemical capacity was observed to be near zero for cycling
current density of 1,600 mA g� 1.

In addition to room temperature testing, the best performing
specimen (that is, 60SiOC) was subjected to electrochemical
cycling at sub-zero temperature at B� 15 �C (for details,
see Supplementary Note 2). When initially cycled at room
temperature (Fig. 2e), the cell had a stable charge capacity
of B600 mAh g� 1

electrode that then reduced to a stable
charge capacity of B200 mAh g� 1

electrode when cycled at low
temperature. The cell regained B86% of its initial capacity when
it returned to cycling at room temperature.

In order to verify electrode integrity, the cells were dissembled
in their lithiated state and the electrode was recovered for
additional characterization. The inset in Fig. 2b and
Supplementary Fig. 17 show the digital photograph and SEM
image of the cycled electrodes. Post-cycling Raman spectroscopy
data is presented in Supplementary Fig. 18 and Supplementary
Table 6. No evidence of surface cracks, volume change, or
physical imperfections were observed in the SEM images,
suggesting high mechanical/structural strength of the composite
paper towards continuous Li-cycling which could be attributed to

unique structure of the electrode as shown in Fig. 2f. In all cases,
evidence of SEI formation due to repeated cycling of Li-ions was
observed. Contamination in the specimen, indicated by arrows,
was a result of residue of glass separator fibers. The electrodes
were briefly exposed to air during the transfer process, resulting
in oxidation of Li, which appeared as bright spots in the images
due to non-conducting nature.

To illustrate the kinetics of charge/discharge of the composite
paper, Galvanostatic intermittent titration cycling was performed
for the 60SiOC electrode at room and low temperature
(for details, see Supplementary Note 3). Acquired DLiþ varied
between B10� 14 and B10� 15 m2 s� 1 during insertion and
extraction (Supplementary Fig. 19). These values are comparable
with values reported for polymer-derived SiOC (Kasper et al.
10� 13 to 10� 15 m2 s� 1)44. In addition, total polarization
potential and time dependent change in open-circuit voltage
(OCV) at various states of charge were inferred for these
experiments, as shown in Supplementary Fig. 20a–d. Reaction
resistance to Li insertion and extraction from the 60SiOC
electrode was calculated by taking a ratio of OCV to the
current density (Supplementary Fig. 20e,f). Reaction resistance
was fairly constant at 2 Ohm g during room temperature
insertion. However, it increased exponentially to 8 Ohm g
during Li extraction in the 1.5–2.0 V range, which highlights
the difficulty in extracting the very last Li atoms from amorphous
SiOC structure (Fig. 2f). Density of state calculations
(Supplementary Fig. 21) show that Li is stored at several energy
levels in the amorphous SiOC structure, with majority of the
insertion occurring in the 0–0.5 V range. Further, a voltage
hysteresis of B0.5 V exists during the extraction half, which
could be attributed to the hydrogen (H-terminated edges of free
carbon phase) that are generally present in the SiOC derived from
thermal decomposition of organosilicon polymers. H content in
pyrolyzed ceramic particles was measured to be B0.25–0.3 wt%
(for details, see Methods section, Supplementary Fig. 2,
Supplementary Table 1). Galvanostatic intermittent titration
performed at low temperature (B� 15 �C) showed DLiþ values
in the B(10� 15 to 10� 13) m2 s� 1 range during Li-ion insertion
and extraction (Supplementary Fig. 22). The total polarization
potential, time dependent change in OCV at various states of
charge performed at B� 15 �C and corresponding reaction
resistance plots are included in Supplementary Fig. 23.

Mechanical strength of the electrode. Static uniaxial tensile tests
were conducted to quantify the strength and strain-to-failure for
the freestanding composite papers by use of a custom-built set-
up. Figure 3a shows a schematic of the test setup, in which the
load cell is attached to a digital meter, connected to a transducer
electronic data sheet in order to transfer the data to host com-
puter through an RS232 serial port using a program written in
MATLAB. Engineering stress–strain plots and tensile modulus,
derived from load–displacement curves for various paper elec-
trodes are compared in Fig. 3b,c, respectively. The rGO sample
showed average tensile strength of B10.7 MPa at a failure strain
of 2.8%, while 60SiOC sample had tensile strength of B2.7 MPa
at a strain of 1.1%. Low tensile strength of the 60SiOC specimen
was expected considering that it contained only B20% rGO.
Overall, strength and modulus for these crumpled composite
papers was lower than GO and rGO papers prepared from
techniques other than high temperature reduction53,54. However,
the strain-to-failure was almost 5 to 10 times higher than a typical
GO, rGO or rGO-composite paper, suggesting that crumpled
composite papers may be able to sustain larger volume changes.
Surface analysis using SEM of rGO (Fig. 3d) showed occurrence
of micro features after tensile test, which we suggest, are due to
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rearrangement of rGO sheets under tensile load. These micro
features are assumed to be due to curling of individual graphene
sheets on the top surface when they lose contact with the sheets
below them. However, for 60SiOC in Fig. 3e, ceramic particles
acted as the point of fracture and caused rGO sheets to separate
without stretching, as proven by SEM images that show no
distinguishable changes before and after tensile test.
Supplementary Fig. 24a–h are the top and cross-sectional view
SEM images of fractured surface. The rGO because of higher
elasticity had an irregular crumpled appearance, but composite
papers were more brittle and had sharper cross-section. Mode of
fracture in rGO and 60SiOC papers differed significantly, as
presented in Supplementary Movies 1 and 2. A loud distinct
sound indicated almost instantaneous fracture of the rGO
specimen, accompanied by curling of both ends of the fractured
paper. Fracture of 60SiOC specimen was similar to a thin plate
with an edge crack, the crack propagation could be clearly
observed. In addition, stress lines could be observed only in the
rGO specimen, radiating from one clamp to another and
indicating distribution of stress throughout the length of the

specimen. These observations are explained with the help of a
schematic in Fig. 3d,e. Ex situ Raman analysis (Supplementary
Fig. 25) from the top surface of the specimens before and after
tests showed increase in average intensity ratio of the Id and Ig

peaks for rGO (0.88 versus 1.02) while the ratio was largely
unaffected for composite specimen.

Discussion
Electrochemical characterization shows that 60SiOC is best
long-term cycling electrode with reversible capacities of
B702 mAh g� 1

electrode at 1st cycle and B588 mAh g� 1
electrode

at 1,020th cycle, respectively. Although 80SiOC offers highest first
reversible capacity of B762 mAh g� 1

electrode, it undergoes
capacity fading and mechanical damage after few initial cycles
at high currents. Hence, the capacity and cycling stability are
affected by the relative amounts of SiOC and graphene in the
composite, respectively. We ascribe the superior electrochemical
performance of 60SiOC electrode to remarkable physical and
chemical properties of its constituents and the unique
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load versus displacement data, and (c) their corresponding modulus values. Error bars are 26.8, 7.6, 41.5, 24.1 MPa for rGO, 10SiOC, 40SiOC, and 60SiOC,

respectively. The SEM images and schematic illustration to show the predicted mechanism of fracture in rGO and 60SiOC freestanding papers: (d) The
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morphological features of the paper. Because graphene sheets in
60SiOC occupy larger volume in the composite, well-dispersed
GO sheets during the layer� by� layer filtration process arrange
themselves around the SiOC particles to form a flexible composite
paper. TEM (Supplementary Fig. 6), SEM (Supplementary Fig. 7)
and FIB (Supplementary Fig. 8) characterization shows that
morphology of the composite paper is planar and porous. The
porous design therefore facilitated liquid electrolyte to reach the
very interior of the electrode thereby providing easy path for
solvated ions to be transported on to the surface of SiOC particles.
Further, rGO because of its high electrical conductivity and
mechanical flexibility provided an electrically conducting (see
Supplementary Table 5) and mechanically robust (see Fig. 3b)
matrix for the Li-active SiOC particles thereby buffering volume
changes in the electrode and maintaining inter particle connec-
tion during long-term cycling. Microscopy (Fig. 2b, Supplemen-
tary Fig. 17) and Raman spectroscopy (Supplementary Fig. 18) of
the disassembled cell reveal formation of stable SEI on a
completely integral electrode, which could explain the high
cycling efficiency observed in these composites.

We attribute high reversible capacity of molecular precursor
derived SiOC to its amorphous structure, which is comprised of
silica domains, –sp2 carbon chains (or the free carbon phase),
nano-voids and silicon/carbon open bonds (Fig. 2f and
Supplementary Fig. 4 for proposed SiOC structure), that offer
large number of sites, in which Li-ion can be reversibly stored.
We notice that even the composite electrodes are not free from
charge–discharge voltage hysteresis (or energy inefficiency) that is
generally observed in precursor derived ceramics during the
extraction half46,49,50. Lowering hydrogen content60 and doping
of silica domains (such as B) in SiOC could be a useful strategy
for improving electrical properties and lowering of voltage
hysteresis in these ceramics40,46. Another important area for
future investigation could be to tailor the rGO flakes for residual
oxygen and hydrogen surface groups and edge defects so that
lithium irreversibility and voltage hysteresis60 that arises from
active defect sites could be minimized without compromising
Li-ions’ mobility and access to the SiOC particles4.

In summary we have demonstrated fabrication of a
freestanding multi-component composite paper consisting of
SiOC glass-ceramic particles supported in rGO matrix as a
stable and durable battery electrode. The porous 3-D rGO
matrix served as an effective current collector and electron
conductor with a stable chemical and mechanical structure
while, embedded amorphous SiOC particles actively cycled
Li-ions with high efficiency. Elimination of inactive ingredients
such as metal current collector, non-conducting polymeric binder
and conducting agent reduces the total electrode weight and
provides the means to produce highly efficient lightweight
batteries.

Methods
Preparation of polymer derived SiOC ceramic. SiOC was prepared through
the polymer pyrolysis route41, liquid 1,3,5,7-tetramethyl-1,3,5,7-tetravinylcy-
clotetrasiloxane (TTCS, Gelest, PA) precursor (with 1 wt% dicumyl peroxide added
as the cross-linking agent) was cross-linked at 380 �C in argon for 5 h, which
resulted in a white infusible mass. The infusible polymer was ball-milled in to fine
powder and pyrolyzed at 1,000 �C for 10 h in flowing argon resulting in a fine black
SiOC ceramic powder.

Chemicals. Sodium nitrate (99.2%), potassium permanganate (99.4%), sulfuric
acid (96.4%), hydrogen peroxide (31.3% solution in water), hydrochloric acid
(30% solution in water) and methanol (99.9%) were purchased from Fisher
Scientific. All materials were used as received without further purification.

Preparation of GO and SiOC composite paper. Modified Hummer’s method was
used to make GO51. A total of, 20 ml colloidal suspension of GO in 1:1 (v/v) water

and isopropanol was made by sonication. Varying weight percentages of SiOC
particles (with respect to GO) were added to the solution and the solution was
sonicated for 1 h and stirred for B6 h for homogenous mixing. The composite
suspension was then filtered by vacuum filtration through a 10 mm filter membrane
(HPLC grade, Millipore). The GO/SiOC composite paper obtained was carefully
removed from the filter paper, dried, and thermally reduced at 500 �C under
argon atmosphere for 2 h. The large-area paper with 60SiOC composition
(with an B6.25 inch diameter, cut into rectangular strip) was similarly prepared by
use of a Büchner funnel with a polypropylene filter paper (Celgard). The
heat-treated paper was then punched (cut) into small circles and used as working
electrode material for Li-ion battery half-cells.

Coin cell assembly and electrochemical measurements. Li-ion battery coin cells
were assembled in an argon-filled glove box. 1 M LiPF6 (Alfa Aesar) in (1:1 v/v)
dimethyl carbonate:ethylene carbonate (ionic conductivity 10.7 mS cm� 1) was
used as the electrolyte. A 25mm thick (19 mm diameter) glass separator soaked in
electrolyte was placed between the working electrode and pure Li foil (14.3 mm
diameter, 75mm thick) as the counter electrode. Washer, spring, and a top casing
were placed to complete the assembly before crimping.

Electrochemical performance of the assembled coin cells was tested using a
multichannel BT2000 Arbin test unit sweeping between 2.5 V to 10 mV versus
Li/Liþ that followed a cycle schedule: (a) Asymmteric mode: Li was inserted at
100 mA g� 1

electrode, while the extraction was performed at increasing current
densities of 100, 200, 400, 800, 1,600 and 2,400 mA g� 1

electrode for 5 cycles each,
and returned to 100 mA g� 1

electrode for the next 10 cycles. (b) Symmetric mode:
later, all the cells were subjected to symmetric cycling at a current density of
1,600 mA g� 1

electrode for up to 1,000 cycles, returning to 100 mA g� 1
electrode for the

last 20 cycles.

Instrumentation and characterization. SEM of SiOC powder was carried out on
a Carl Zeiss EVO MA10 system with incident voltage of 5–30 kV. TEM images
were digitally acquired by use of a Phillips CM100 operated at 100 kV. TEM
elemental mapping was performed by using a 200 kV S/TEM system (FEI Osiris)
equipped with chemiSTEM technology, a high angle annular dark field (HAADF)
and Super-X windowless EDX detector. Super-X windowless EDX detector system
with silicon drift detector technology allowed fast EDX data collection (a factor of
more than 50 enhancement in acquisition speed of EDX chemical mapping) and
large field of view elemental mapping. Acceleration voltage was 200 kV and
acquisition time was 10 min.

A FIB system (FEI Versa 3D Dual Beam) was used for milling and imaging
cross-section of the paper electrodes following standard procedures. Briefly, a
platinum protective layer (B25mm� 10mm� 5 mm in x, y and z axes, respectively)
was first deposited at an ion beam current of B5 nA. Milling was then performed
using regular cross section at an ion beam current of B65 nA to create trenches on
either side and bottom face of platinum-coated area. Followed by cleaning
cross-section feature (B20mm� 1 mm� 6 mm in x, y and z axes, respectively) to
fine mill contamination at the bottom face of platinum coated area. The
acceleration voltage of Gaþ was 30 kV. An ion-beam current of B40 pA was used
for imaging purposes. In-column detector for secondary electrons in beam
deceleration mode was used for SEM imaging of the milled cross-section.
Elemental mapping (EDS) was performed by use of an inbuilt energy dispersive
spectroscopy silicon drift detector (Oxford Instruments).

Raman spectra were collected using a confocal Raman imaging system (Horiba
Jobin Yvon LabRam ARAMIS) with 633 nm HeNe laser (laser power of 17 mW) as
the light source with a � 100 microscope objective. Data acquisition was
performed at an exposure time of 20 s with at least four accumulations at each
point. D1 filter (10% transparency) was employed for the ceramic powder samples.
Additional material characterization was made using XRD operating at room
temperature, with nickel-filtered CuKa radiation (l¼ 1.5418 Å). The surface
chemical composition was studied by XPS (PHI Quantera SXM-03 Scanning XPS
Microprobe) using monochromatic Al Ka radiation. For XPS depth profiling,
sputtering was performed with a 5 keV Argon ion gun for 20 min followed by
survey scan. The sputtered area was set to B2 mm� 2 mm. The process was
repeated four times with total sputtering time reaching 80 min.

Further, bulk elemental composition of the pyrolyzed SiOC ceramic was
measured following procedures similar to as described in the literature46. Analysis
was done for carbon, oxygen and hydrogen content. Silicon content was calculated
as a difference to 100%. The carbon content was measured by use of LECO
Analyzer Model CS844 (LECO Corp. Analytical Bus, St Joseph, MI) by the
combustion method and IR detection. Approximately 50 mg of SiOC powder
mixed with accelerants as Iron chips and Lecocel II HP was used for this test. The
oxygen and hydrogen contents were measured by use of LECO Analyzer Model
No. ONH-836 (LECO Corp. Analytical Bus, St Joseph, MI) based on inert gas
fusion thermal conductivity/infrared detection method. Specimen preparation
involved mixing B34 mg of SiOC ceramic powder with graphite powder (LECO
Corp.) as an accelerant in a nickel capsule (LECO Corp.) followed by placement in
graphite crucible. The crucible was then heated to B3,000 �C in the chamber and
gaseous products transferred to IR/thermal conductivity detectors for analysis. The
mass per cent of carbon and oxygen were quantified in reference to the IR
spectrum generated from graphite and tungsten oxide powders, respectively.
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Hydrogen content in SiOC ceramic was also confirmed by use of another
equipment based on combustion/thermal conductivity detector method, CE-440
Elemental Analyser (Exeter Analytical, UK). Combustion of the weighed sample
(1.8056 mg of fine powder) was carried out in the instrument chamber in pure
oxygen under static conditions. Helium carried the combustion products through
the analytical system to atmosphere. Between the thermal conductivity cells
absorption trap removed water from the sample gas. The differential signal read
before and after the trap reflected the water concentration and, therefore, the
amount of hydrogen in the original sample. The hydrogen content by this method
was observed to be 0.25 wt% with an error of 0.06%. TGA was performed using
Shimadzu 50 TGA (limited to 800 �C). Samples weighing, B2.5 mg, were heated in
a platinum pan at a rate of 10 �C min� 1 in air flowing at 20 ml min� 1. Electrical
conductivity measurements were carried out by use of a four-point probe setup and
Keithley 2636A (Cleveland, OH) dual channel sourcemeter in the Ohmic region.
Electrochemical cycling of assembled cells was carried out using multichannel
Battery Test Equipment (Arbin-BT2000, Austin, TX) at atmospheric conditions.

Mechanical testing. Static uniaxial in-plane tensile tests were conducted in a
custom-built test setup. One end of the setup was connected to a 1N load cell
(ULC-1N Interface) and the other end was clamped to a computer-controlled
translation stage (M-111.2DG from PI). The entire setup was located on a bench
with self-adjusting feet. All tensile tests were conducted in controlled strain rate
mode with a strain rate of 0.2% min� 1. Paper electrodes were cut (punched out)
into rectangular strips of B5� 15 mm2 for testing without any further
modification.
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