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Abstract—Due to the challenge of climate and energy crisis,
renewable energy generation including solar generation has expe-
rienced significant growth. Increasingly high penetration level of
photovoltaic (PV) generation arises in smart grid. Solar power is
intermittent and variable, as the solar source at the ground level is
highly dependent on cloud cover variability, atmospheric aerosol
levels, and other atmosphere parameters. The inherent variability
of large-scale solar generation introduces significant challenges
to smart grid energy management. Accurate forecasting of solar
power/irradiance is critical to secure economic operation of the
smart grid. This paper provides a comprehensive review of the
theoretical forecasting methodologies for both solar resource
and PV power. Applications of solar forecasting in energy
management of smart grid are also investigated in detail.

Index Terms—Energy management, forecasting models, pho-
tovoltaic, smart grid, solar energy.

I. INTRODUCTION

LOBAL warming and the energy crisis over the past

few decades have motivated the use and development of
alternative, sustainable, and clean energy sources. Solar energy
is inexhaustible and considered as one of the most promising
renewable resources for bulk power generation. Photovoltaic
(PV) cells are the basic technology for converting solar energy
into electric power. By the end of 2014, large capacity PV
power generation was installed in Germany (38.24 GW) [1],
China (28.05 GW) [2], Italy (18.31 GW), Japan (23.3 GW),
U.S.A. (18.28 GW) [1], and Spain (5.39 GW), etc. Among
others, Germany is the world’s top installer and consumer
of PV power [3], [4]. PV power generation has introduced
significant economic and environmental interests to the public
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social awareness, such as reducing emissions of COq as well
as creating employment [5].

PV power is reaching higher and higher penetration level
in the smart grid [6]. An important feature of the smart grid
is its high ability to integrate renewable energy generation.
However, as an intermittent energy source, PV generation
introduces significant volatility to the smart grid, which brings
severe challenges to system stability [7], electric power bal-
ance [8], reactive power compensation [9], frequency re-
sponse [10], etc.

To ensure secure and economic integration of PVs into
the smart grid, accurate PV power forecasting has become a
critical element of energy management systems. Accurate fore-
casting can help improve electric power quality of the electric
power delivered to the electricity network and, and thus reduce
the ancillary costs associated with general volatility [11]. Since
PV power output is directly related to solar irradiance at the
ground level, solar irradiance prediction is also equally impor-
tant to energy management in the smart grid [12]. Moreover,
solar prediction with multiple look-ahead times is significant
in that it addresses the needs of different operation and control
activities, including grid regulation, power scheduling, and
unit commitment in both the distribution and transmission
grids [13]. Due to the chaotic nature of weather systems and
the uncertainties involved in atmospheric conditions such as
temperature, cloud amount, dust and relative humidity, precise
solar power forecasting can be extremely difficult. A number
of forecasting models have been developed for solar resources
and power output of PV plants at utility scale level in the past
few years.

PV generation forecast methods can be broadly classi-
fied into four approaches, i.e., statistical approach, artificial
intelligence (AI) approach, physical approach, and hybrid
approach. Statistical approaches are based on data-driven
formulation using historical measured data to forecast solar
time series [14]. Al approaches utilize advanced Al techniques,
such as artificial neural networks (ANNSs), to construct solar
forecasters, which can be also classified into the category
of the statistical approach [15]. Physical models are based
on numerical weather prediction (NWP) or satellite images
that predict solar irradiance and PV generation [16], [17].
Finally, hybrid approaches are combination of the three afore-
mentioned methods [10]. In practice, different forecasting
approaches are preferred depending on different scales of
prediction horizons to meet the requirements of the decision-

2096-0042 (© 2015 CSEE



WAN et al.: PHOTOVOLTAIC AND SOLAR POWER FORECASTING FOR SMART GRID ENERGY MANAGEMENT 39

making process [18].

This paper reviews the state-of-the-art of PV and solar
forecasting methodologies developed over the past decade.
The merits and demerits of different types of approaches are
discussed from both the theoretical and practical perspectives.
The applications of solar forecasting in smart grid management
are also investigated.

II. CHARACTERISTICS OF SOLAR FORECASTING

Solar forecasting commonly outputs solar irradiance or PV
power. The properties of PV generation are essential to solar
energy modeling and forecasting. Some important charac-
teristics of solar forecasting, including related variables and
prediction horizon, are clarified in this section. Standardized
performance evaluation indices are introduced for developing
new solar energy predictors.

A. PV Generation

The forecasted power output of PV generations is affected
by many factors including but not limited to the measurement
of solar irradiance, reflectivity, estimation of PV cell tempera-
tures, and the efficiency of the inverter. The maximum power
output is presented by

Pr =nSI[1—0.05(ty — 25)] (1)

where 7 represents the conversion efficiency (%) of the solar
cell array; S is the array area (m?); I is the solar radiation
(kW/m?); and tg is the outside air temperature (°C).

Tracking the maximum power point (MPPT) of a PV array
is usually an essential part of a PV system so as to improve
the efficiency [19]. The MPPT technique is to automatically
find the voltage Vk and the current Ir, where the PV array
operates efficiently to obtain the maximum power output Px
under a given temperature and irradiance, as demonstrated in
Fig. 1.
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Fig. 1. Characteristic PV array power curve.

B. Major Aspects of Solar Forecasting

The selection of input variables and prediction horizon
affects the accuracy of the developed prediction model. In
general, the relevant variables available as inputs of the
prediction model of solar power include but are not limited
to the following factors [20]:

1) historical measurements of PV generation;

2) historical measurements of explanatory variables, such
as relevant meteorological variables, including global
horizontal irradiance (GHI), temperature, cloud cover,
humidity, wind speed, and so on.

3) forecasts of explanatory variables, e.g., NWP.

The most important input is the available observations of
solar power for forecasts up to 2 h ahead, while NWPs are
the most important input for longer horizons.

From the point of view of practical use, different prediction
horizons will correspond to the specific needs of decision-
making activities in the smart grid, as follows:

1) Very short-term forecasting (from a few seconds to
minutes): Very short-term forecasts can be used for PV
and storage control and electricity market clearing, such
as 5 minutes for the Australian electricity market [21]. In
the smart grid environment, very short-term forecasting
of solar power becomes more important than before.

2) Short-term (up to 48—72 hours ahead): Such forecasts are
crucial for different decision-making problems involved
in the electricity market and power system operation,
including economic dispatch, unit commitment, etc.

3) Medium-term (up to one week ahead): Medium-term
forecasting would be useful for e.g., maintenance
scheduling of PV plants, conventional power plants,
transformers, and transmission lines.

4) Long-term (up to months to years): Long-term predic-
tion/estimation can be applied for long-term solar energy
assessment and PV plant planning.

Different prediction horizons along with their decision-
making activities are shown in Fig. 2. From the perspective of
smart grid energy management and power system operations,
very short-term and short-term prediction of solar power are
particularly useful for activities, such as PV plant operations,
real-time unit scheduling, storage control, automatic gener-
ation control (AGC), and electricity trading. Most studies,
therefore, focus on developing advanced models for very short-
term and short-term solar forecasting.
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Fig. 2. Forecasting horizons and corresponding decision making activities.

C. Standardizing Performance Measures

Various evaluation indices are proposed and applied to mea-
sure the accuracy of solar and PV forecasting. Standardizing
performance measures would be helpful for prediction model
evaluation and benchmarking. The commonly used indices
include mean bias error (MBE), mean absolute error (MAE),
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mean square error (MSE), and root mean square error (RMSE),
expressed as,

N
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where X; and X; represent the i*? prediction and observation
value, respectively, and N is the size of the test dataset.

These performance measures have their own characteristics
and emphasis. The decision maker can choose the most
appropriate one for the prediction evaluation according to the
special conditions.

III. STATISTICAL MODELS

Statistical approaches have been widely used in time series
forecasting. In general, statistical approaches are based on his-
torical data. The predictor aims at constructing the relationship
between the variables used as inputs for the statistical model
and the variable to be predicted.

A. Persistence

The persistence approach is always regarded as a naive
predictor, widely used for meteorology-related forecast-
ing [22]. This simple prediction method assumes that the
solar power/irradiance in the future X, will be the latest
measurement X;, expressed as,

Xt+1 - Xt- (6)

Though with significant simplicity, the persistence approach
is difficult to be outperformed for the look-ahead times shorter
than a few hours. The generalized persistence method is
defined, namely, that the future prediction target is the average
of the last 7" measured values, expressed as,

1 T-—1
Xopr =7 D Xii (7)
1=0

which is also known as the moving average. In spite of its
simplicity, it is the most popular reference model in short-term
forecasting of solar energy as well as wind power [18], [23].
It is reasonable that any newly developed prediction model
should perform better than any naive reference model; oth-
erwise it cannot be meaningful. Persistence forecast accuracy
decreases significantly with forecasting horizon [24].

B. ARMA

The auto-regressive moving average (ARMA) is one of the
most popular time series forecasting models due to its ability
to extract useful statistical properties [25]. Theoretically, it is
based on two elementary parts: the moving average (MA) and
the autoregressive (AR), expressed as,

p q
Xe=> 0iXii+ Y bieri ®)
=1 =1

where X, is the forecasted solar power/irradiance at time ¢, p is
the order of the AR model, ; is the it AR coefficient, q is the
order of the MA error term, 6; is the jth MA coefficient, and
€ denotes the white noise, which is an independent variable
with zero mean and constant variance.

ARMA is usually expressed as ARMA(p, ¢), where p and
q are the order of AR and MA, respectively. Mathematically,
ARMA(p, q) can be transformed to an AR(p) model when
q = 0, and an MA(q) model when p = 0. The ARMA
model is usually applied to auto correlated time series data
and has become a popular and practical tool for predicting the
future value of a specific time series. ARMA models are very
flexible since they can represent several different types of time
series by using different orders. They have been proved to be
competent in prediction when there is an underlying linear
correlation structure in the time series. ARMA is applied to
forecasting future solar generation in California based on solar
radiation data originating from SolarAnywhere, and shows
better performance than the persistence model [24].

C. ARIMA

The major limitation of the ARMA model is that the objec-
tive time series must be stationary, i.e., the statistical properties
of time series do not change over time. The auto-regressive
integrated moving average (ARIMA) model is developed for
nonstationary random processes. An ARIMA(p, d, g) model
of the nonstationary random process X; can be expressed as,

p q
<1 -> qsiLi) (1-L0)7X, = (1 +y 0Jf> e (9)
=1 =1

where L denotes the lag operator defined by LX; = Y;_1, ¢;
is the AR coefficient, §; represents the MA coefficients, ¢, is
a white noise that is independent and identically distributed
random variables with zero mean, p is the order of AR, d is
the number of nonseasonal differences, and q is the MA order.
In the case of d = 0, ARIMA(p, d, ¢) is transformed to be an
ARMA(p, ¢) model.

The ARIMA model is the most general class of models for
time series prediction. The success of ARIMA is because of
its exceptional ability to capture the periodical cycle better
than other methods [25]. In [26], input data of ARIMA are
transformed to log values to predict solar irradiance.

D. ARMAX

Theoretically, both ARMA and ARIMA cannot involve
the process behavior. To consider exogenous inputs, the
autoregressive-moving-average model with exogenous inputs
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(ARMAX) model is applied, which has proved to be a great
tool in time series prediction [27]. ARMAX is actually an
extension of ARIMA and can be more flexible for practical
use of solar power prediction because it can include external
variables such as temperature, humidity, and wind speed. The
model can be referred to as ARMAX(p, ¢, b) with p AR terms,
q MA terms and b exogenous inputs terms, defined by,

p q b
X = Z 0iXy i+ Z Oiet—i + Z nids—; (10)
i=1 i=1 i=1

where n; is the parameters of the exogenous input d;.

ARMAX is proposed for PV power forecasting and takes
into account temperature and humidity as exogenous inputs
that can be easily assessed from the local observatory. It
achieves better performance than the ARIMA model [28]. A
novel multi-time scale data-driven forecast model based on
spatio-temporal (ST) and autoregressive with exogenous input
(ARX) is developed for a solar irradiance forecast model.
Simulation results that use the real solar data of PV sites
in California and Colorado demonstrate the proposed model
can derive satisfactory results for 1 h and 2 h look-ahead
times [29].

IV. ARTIFICIAL INTELLIGENCE MODELS

Al techniques are being used in various fields, including
forecasting, pattern recognition, control, optimization, and so
on. Due to the high leaning and regression capabilities, Al
techniques have been widely employed for modeling and
prediction of solar energy.

A. Artificial Neural Networks

Theoretically, multilayered feedforward neural networks
(NNs) can be universal approximators and have tremendous
capability to approximate any nonlinear mapping to any degree
of accuracy [30]. The typical structure of an NN is shown in
Fig. 3.

Output
layer

Fig. 3. Typical structure of a feed-forward neural network.

Given a dataset with N distinct samples {(z;, t;)}; where
the inputs ; € R" and the outputs ¢; € R, the NN with K
hidden nodes and activation function #(-) for approximating
the N samples can be expressed by

K
fr(@y) =Y Bip(a;-a;+b;), j=1,....,N. (1)
i=1

where a; denotes the weight vector between the i*" hidden
neuron and the input neurons, (3; is the weight vector between
the i*" hidden neuron and the output neurons, b; represents
the threshold of the ‘" hidden node, and (a; - x;+0b;) is the
output of the i*" hidden node with respect to the input x;.

Theoretically, the parameters of NN can be optimized
through different algorithms, among which the back-
propagation (BP) algorithm is the most common gradient-
based algorithm with the objective function defined by

N /K 2
C:Z (Zﬁl’(/}(ale —‘rbl) —tj> . (12)
j=1 \i=1

As an alternative to conventional approaches, ANNs have
been successfully applied to solar forecasting [31]. A short-
term solar irradiance forecasting model has been built based
on a BP neural network and time series that avoids over-fitting
and is able to reach accurate solar irradiance prediction [32].
Multilayer Perceptron (MLP) is utilized to predict the solar
irradiance on the basis of 24 h realistic data from Trieste,
Italy [33]. The proposed MLP-model provides reference to
grid connected photovoltaic plants (GCPV) and improves the
control algorithms of charge controllers.

In [34], a novel PV power forecasting model is proposed
based on BP NN, which considers the aerosol index as an
additional input parameter to forecast the next 24-h PV power
outputs. Experimental results demonstrate that the proposed
approach performs better than traditional ANN methods that
consider temperature, humidity, and wind speed. In [35], three
distinct ANNs are established to fit three typical types of days
(sunny, partly cloudy, and overcast) for short-term forecasting
of the power generated by a large-scale PV plant located in
southern Italy. ANN is applied to predict small solar panel
to determine the highest representative of solar prediction
horizon for small scale solar power system applications [36].
Bayesian neural network (BNN) is proposed for estimating
the daily global solar irradiation with the input parameters
of air temperature, relative humidity, sunshine duration, and
extraterrestrial irradiation, which has superior performance
comparing with classical NN and empirical models [37].
Wavelet based ANN approach is proposed to forecast solar
irradiance in Shanghai, indicating that more accurate forecasts
can be produced due to the application of wavelet [38].

B. Other Models

In addition to ANNSs, there are a variety of Al models
applied to solar energy forecasting. Radial Basis Function
neural network (RBFNN) is used for the prediction of the
daily global solar radiation using meteorological data such as
air temperature, sunshine duration, and relative humidity [39].
A least-square support vector machine (LS-SVM) based model
is proposed for short-term solar power prediction [40]. The LS-
SVM model outputs the forecasted atmospheric transmissivity
that is converted to solar power and outperforms a reference
AR model and RBFNN based model. Several Al techniques in-
cluding linear, feed-forward, recurrent Elman and Radial Basis
Function NNs together with the adaptive neuro-fuzzy inference
scheme are proposed for the forecasting of mean hourly global
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solar radiation [15]. The power production forecasting of a PV
system is executed based on insolation forecasting with 24-
hour look-ahead time by using weather reported data, fuzzy
theory and NN [41]. A weather-based hybrid method for day
ahead hourly forecasting of PV power is proposed consisting
of classification, training, and forecasting stages [11]. Self-
organizing map (SOM) and learning vector quantization (LVQ)
are applied to classify the collected historical data of PV power
outputs. Support vector regression (SVR) is used to train the
input/output data of temperature, probability of precipitation,
and solar irradiance. Fuzzy inference is employed to select
the trained model for accurate prediction. In [42], the Gamma
test (GT) is combined with local linear regression, multi-layer
perceptron (MLP), Elman neural network, neural network
auto-regressive model with exogenous inputs (NNARX) and
adaptive neuro-fuzzy inference system (ANFIS) to success-
fully reduce trial and error workload. The methodology is
then tested on solar radiation at the Brue catchment, UK.
A wavelet recurrent neural networks (WRNNs) is proposed
for 2-day solar radiation forecast to exploit the correlation
between solar radiation and other related variations of wind
speed, humidity, and temperature [43]. A hybrid solar radiation
prediction model combining fuzzy and neural networks is
developed in [44], where future sky conditions and temper-
ature information derived from National Environment Agency
(NEA) are classified as different fuzzy sets based on the fuzzy
rules.

V. PHYSICAL MODELS

Different from statistical models and Al techniques, phys-
ical models utilize solar and PV models to generate solar
irradiance/power prediction. The generalized framework of
physical approaches is shown in Fig. 4.

Weather prediction
1. Global horizontal irradiance
2. Temperature
3. Humidity
4. Wind speed

System and measurement data
1. Specific system configuration
2. Historical measured power and

meteorological information

}

Prediction of radiation and
temperature on PV panel/plant

;

Prediction of PV power

Fig. 4. Typical framework of physical approaches for PV power forecasting.

A. Sky Image-Based Model

The cloud cover and cloud optical depth have critical
influence on solar irradiance at the surface level. Determining
cloud states would be beneficial for solar irradiance forecast-
ing. Generally, the sky image-based method is based on the
analysis of the cloud structures during a given period. Satellites
and ground-based sky image approaches have been used for
the prediction of local solar irradiance.

Satellites have been used for predicting local solar irradi-
ance conditions. Satellite image based models are based on
detecting and recording the cloud structures during some time
period and have high spatial and temporal resolution for solar
irradiance prediction. Clouds can be detected and characterized
from the images to predict GHI relatively accurately up to
6 h ahead. The time series derived from the analysis data of
satellite images can be used to detect the motion of cloud
using motion vector fields [45]. The short term forecasts
of solar irradiance up to 6-h ahead is conducted based on
Meteosate satellite images [46]. Similar forecasts are obtained
based on the images of the Geostationary Operational Envi-
ronment Satellite in [18]. An advanced model of estimating
ground solar irradiance from satellite (AMESIS) has been
developed with better accuracy for the incident solar radiation
at the surface based on the spinning enhanced visible and
infrared imager (SEVIRI) satellite measurements [17]. The
application of new sensors such as SEVIRI can improve the
solar prediction accuracy as well as the high spatial and
time resolution according to the specific requirements of solar
energy applications.

In contrast to the satellite image based method, ground-
based sky images can provide a much higher spatial and
temporal resolution for solar forecasts, on the basis of a total
sky imager (TSI) [47]. It can detect the cloud shadow and
thus capture sudden changes in the irradiance, which would be
crucial for large-scale PV power plants or distribution network
feeders with a high share of PV. If a single TSI is utilized at
a site, only short look-ahead time prediction can be achieved
because of the designated spatial scale of cloud images and
large cloud variability. The forecast horizon varies from 5 to
25 min depending on the cloud images according to [47].

B. NWP-Based Models

Numerical weather prediction has become the most accurate
tool for solar irradiation forecasting with look-ahead time
longer than several hours. NWP model is able to predict solar
irradiance and cloud coverage percentage based on numerical
dynamic modeling of the atmosphere. Theoretically, NWP
is based on that precise knowledge about the state of the
atmosphere at some specific time and the correct physical laws
that governing the transition of the atmosphere by the basic
differential equations.

In general, NWP provides more benefits than aforemen-
tioned prediction models. Satellite imagery models are only
suitable for the 1 to 5 h ahead forecast horizon. NWP models
are used to predict the state of the atmosphere up to 15 days
ahead. There is general consensus that NWPs provide more
accurate forecasts than satellite based methods under the look-
ahead time beyond 4 hours [46].

Several NMP models can be used in solar forecasting,
including European Centre for Medium-Range Weather Fore-
casts (ECMWF), North American Mesoscale (NAM), Global
Forecast System (GFS) and so on [16]. ECMWF is used
to predict regional PV power output in Germany with three
days look-ahead time [46]. Generally, forecast accuracy has
increased for regional forecasts depending on the size of
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the region. The NAM, GFS, and ECMWF have been val-
idated in GHI forecasts for the continental United States
(CONUS) ground measurement data [48]. It has been proved
that ECMWEF has the highest accuracy in cloudy conditions,
while GFS has the best performance in clear sky conditions.
A forecasting model based on grid point value (GPV) datasets
is proposed for solar irradiance forecasting using relative
humidity, precipitation, and three-level cloud covers [49].
Numerical studies have been conducted in Hitachi and four
main cities in Japan, indicating the proposed model is reliable.

Nevertheless, NWP models including NAM, GFS, and
ECMWF have some inherent limitations. Due to the insuf-
ficient spatial resolution, they predict only average value of a
grid and cannot precisely predict the value of a given point.
In addition, running NWP requires high computation costs,
e.g., output frequency is 1 h for NAM and 3 h for GFS
and ECMWE. Due to spatial and temporal limitations, the
characteristics of most clouds remain unresolved in NWP with
prediction horizons less than several hours [29].

VI. HYBRID MODELS

In practice, various hybrid solar prediction methodologies
have been proposed to integrate the merits of different types of
prediction models. An advanced model combining ARMA and
a nonlinear autoregressive neural network (NARNN) model
offers short-term forecasting of hourly global horizontal solar
radiation (up to 915 h ahead) and forecasting of a high-
resolution solar radiation database (1 s to 30 s scales) with
look-head time up to 47,000 s using measured meteorological
solar radiation [50]. A novel hybrid model incorporating
both ARMA and Time Delay Neural Network (TDNN) is
able to forecast hourly solar radiation providing excellent
results, where the ARMA model is applied to predict the
stationary residual series, and TDNN is utilized to fulfill
the prediction [51]. The seasonal auto-regressive integrated
moving average method (SARIMA) and the support vector
machines method (SVMs) are combined for hourly solar power
prediction of a small-scale GCPV plant with 20 kWp [52]. A
novel approach combing the clear sky, AR and ARX models
and taking NWPs as input is developed to predict hourly solar
power with look-ahead time up to 36 h, and tested on 21 PV
systems located in a small village in Denmark [14]. A hybrid
forecasting model is proposed by the integration of satellite
image analysis to obtain a cloud cover index by self-organizing
maps (SOM) and a hybrid exponential smoothing state space
(ESSS) model together with ANN [21]. It is tested on hourly
solar irradiance in Singapore, showing better performance than
traditional forecasting models.

VII. APPLICATIONS IN SMART GRID
ENERGY MANAGEMENT

With large-scale penetration of PV power, the negative
effects on the distribution network, especially on the energy
management of smart grid is drawing a lot of attention [53]-
[57], including problems of voltage fluctuation, power flow,
grid losses, short-circuit current of distribution networks, and
so on [55]. Solar and PV power prediction could provide

meaningful guidance for system operators, electricity partici-
pants as well as decision makers of electric power planning.

Forecasting models with different prediction periods have
been employed for smart grid energy management. Short-time
fluctuation of PV outputs can be extremely large, depending
on weather conditions, such as cloud passing [58]-[60]. The
accurate very short-time PV power prediction model with
prediction period from 30 s to several minutes could help to
smooth the PV outputs, so as to avoid large fluctuations of
voltage and frequency of smart grid.

To limit the ramp rate of PV generations, various strategies
have been applied to smooth the PV outputs. An electric
double-layer capacitor [61]-[63], battery storage system [64],
fast ramping generators [65], and electric vehicles [66] are
commonly utilized technologies to absorb the rapid fluctua-
tions of PV generators. Various strategies are proposed in [67],
[68] to schedule intraday electric power of smart grids with
PV generation integration. As distributed generation (DG)
increases in common practice, the PV generators will pose
significant influences in the operation of distribution networks,
such as network loss minimization, reliability enhancement
and distribution network reconfigurations [69], [70]. Intelligent
energy management systems with both grid-connected and
islanded operations are modeled in [71], [72], which consider
the capacity and charging rate of storage, residential load
variations, and distribution network electricity price as well.

In the smart grid environment, the development of day-
ahead energy management tools for next-generation PV instal-
lations, including storage units and demand response, causes
flexibility and uncertainty to smart grid operators. In [73], a
hierarchical determinist energy management method is pro-
posed to fulfill central energy management of the microgrid
and a local power management on the customer side. A price-
based day-ahead energy management system with storage
system and demand response to cover the fluctuations of
the uncertainties of the PV outputs is proposed in [74].
In particular, the local energy management with residential
PV system [75] and building-integrated PV microgrid [76]
has been widely discussed by researchers. In addition, day-
ahead power scheduling is becoming an important part of
power systems considering the thermal generators’ slow ramp
limitation. The effects of forecast accuracy of large-scale
aggregated photovoltaic power generation is evaluated in [77].
Day-ahead scheduling of PV generation combined with battery
storage in the unit commitment problems are proposed in [78]—
[80]. Another application of day-ahead prediction model is the
bidding strategy of PV companies participating in the day-
ahead electricity markets [81], [82].

VIII. CONCLUSION

This paper presents relevant research work on developing
PV and solar power forecasting approaches. It describes the
characteristics of solar forecasting. Forecasting models of PV
and solar power are divided in to four classes: statistical
models, Al-based models, physical models and hybrid mod-
els. The advantages and disadvantages of different types of
prediction methodologies are briefly discussed in this paper.
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Moreover, the applications of solar forecasting in smart grid
energy management are thoroughly investigated. According
to the specific applications, the appropriate solar forecasting
methodologies can be chosen to ensure the performance.
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